901
Views
21
CrossRef citations to date
0
Altmetric
Invited Article

Design and fabrication of liquid crystal-based lenses

, , &
Pages 2121-2132 | Received 04 Apr 2017, Published online: 28 May 2017

References

  • Sato S. Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys. 1979;18:1679–1684.
  • Koo K, Na J-H, Kim Y-T, et al. Stamping-assisted fabrication technique of the bidirectional alignment layer for wide-viewing twisted-nematic liquid crystal displays. J Inf Disp. 2009;10:180–183.
  • Kim D-W, Yu C-J, Kim H-R, et al. Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration. Appl Phys Lett. 2006;88:203505.
  • Fan F, Srivastava AK, Du T, et al. Low voltage tunable liquid crystal lens. Opt Lett. 2013;38:4116–4119.
  • Ruiz U, Pagliusi P, Provenzano C, et al. Liquid crystal microlens arrays recorded by polarization holography. Appl Opt. 2015;54:3303–3307.
  • Lu L, Sergan V, Van Heugten T, et al. Surface localized polymer aligned liquid crystal lens. Opt Express. 2013;21:7133–7138.
  • Goodby JW. Chirality in liquid crystals. J Mater Chem. 1991;1:307–318.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47:2754–2787.
  • Yang D-K, Wu S-T. Fundamentals of liquid crystal devices. Chichester (UK): Wiley; 2006.
  • Kim JH, Kumar S. Fast switchable and bistable microlens array using ferroelectric liquid crystals. Jpn J Appl Phys. 2004;43:7050–7053.
  • Lee Y-M, Lee K-H, Choi Y, et al. Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals. Jpn J Appl Phys. 2008;47:6343–6346.
  • Srivastava AK, Wang XQ, Gong SQ, et al. Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens. Opt Lett. 2015;40:1643–1646.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Lin Y-H, Chen H-S, Lin H-C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:113505.
  • Lin C-H, Wang -Y-Y, Hsieh C-W. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals. Opt Lett. 2011;36:502–504.
  • Li Y, Wu S-T. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt Express. 2011;19:8045–8050.
  • Li Y, Liu Y, Li Q, et al. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film. Appl Opt. 2012;51:2568–2572.
  • Rong N, Li Y, Li X, et al. Polymer-stabilized blue-phase liquid crystal Fresnel lens cured with patterned light using a spatial light modulator. J Display Technol. 2016;12:1008–1012.
  • Yoshida H, Kobashi J. Flat optics with cholesteric and blue phase liquid crystals. Liq Cryst. 2016;43:1909–1919.
  • Ye M, Wang B, Sato S. Liquid-crystal lens with a focal length that is variable in a wide range. Appl Opt. 2004;43:6407–6412.
  • Pishnyak O, Sato S, Lavrentovich OD. Electrically tunable lens based on a dual-frequency nematic liquid crystal. Appl Opt. 2006;45:4576–4582.
  • Ren H, Wu S-T. Adaptive liquid crystal lens with large focal length tunability. Opt Express. 2006;14:11292–11298.
  • Choi W, Kim D-W, Lee S-D. Liquid crystal lens array with high fill-factor fabricated by an imprinting technique. Mol Cryst Liq Cryst. 2009;508:35–51.
  • Na J-H, Park SC, Kim S-U, et al. Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode. Opt Express. 2012;20:864–869.
  • Algorri JF, Urruchi V, Bennis N, et al. Liquid crystal spherical microlens array with high fill factor and optical power. Opt Express. 2017;25:605–614.
  • Kao -Y-Y, Chao -PC-P, Hsueh C-W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. Opt Express. 2010;18:18506–18518.
  • Valley P, Mathine DL, Dodge MR, et al. Tunable-focus flat liquid-crystal diffractive lens. Opt Lett. 2010;35:336–338.
  • Kao -Y-Y, Chao -PC-P. A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time. Sensors. 2011;11:5402–5415.
  • Li G, Valley P, Giridhar MS, et al. Large-aperture switchable thin diffractive lens with interleaved electrode patterns. Appl Phys Lett. 2006;89:141120.
  • Li L, Bryant D, Van Heugten T, et al. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes. Opt Express. 2013;21:8371–8381.
  • Li G, Valley P, Äyräs P, et al. High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures. Appl Phys Lett. 2007;90:111105.
  • Hsu C-J, Liao C-H, Chen B-L, et al. Polarization-insensitive liquid crystal microlens array with dual focal modes. Opt Express. 2014;22:25925–25930.
  • Choi Y, Park J-H, Kim J-H, et al. Fabrication of a focal length variable microlens array based on a nematic liquid crystal. Opt Mater. 2003;21:643–646.
  • Kim J, Kim J, Na J-H, et al. Liquid crystal-based square lens array with tunable focal length. Opt Express. 2014;22:3316–3324.
  • Wang B, Ye M, Sato S. Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers. Appl Opt. 2004;43:3420–3425.
  • Ren H, Fox DW, Wu B, et al. Liquid crystal lens with large focal length tunability and low operating voltage. Opt Express. 2007;15:11328–11335.
  • Ren H, Fan Y-H, Gauza S, et al. Tunable-focus flat liquid crystal spherical lens. Appl Phys Lett. 2004;84:4789–4791.
  • Choi Y, Kim H-R, Lee K-H, et al. A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer. Appl Phys Lett. 2007;91:221113.
  • Ren H, Wu S-T. Tunable electronic lens using a gradient polymer network liquid crystal. Appl Phys Lett. 2003;82:22–24.
  • Ren H, Xu S, Wu S-T. Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time. Opt Lett. 2013;38:3144–3147.
  • Lin H-C, Lin Y-H. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. Opt Express. 2012;20:2045–2052.
  • Ren H, Xu S, Liu Y, et al. Switchable focus using a polymeric lenticular microlens array and a polarization rotator. Opt Express. 2013;21:7916–7925.
  • Chen M-S, Chen P-J, Chen M, et al. An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses. Opt Express. 2014;22:11427–11435.
  • Fan Y-H, Ren H, Wu S-T. Electrically switchable Fresnel lens using a polymer-separated composite film. Opt Express. 2005;13:4141–4147.
  • Dai HT, Liu YJ, Sun XW, et al. A negative–positive tunable liquid-crystal microlens array by printing. Opt Express. 2009;17:4317–4323.
  • Kim YW, Jeong J, Lee SH, et al. Improvement in switching speed of nematic liquid crystal microlens array with polarization independence. Appl Phys Express. 2010;3:94102.
  • Presnyakov VV, Galstian TV. Electrically tunable polymer stabilized liquid-crystal lens. J Appl Phys. 2005;97:103101.
  • Xu M, Zhou Z, Ren H, et al. A microlens array based on polymer network liquid crystal. J Appl Phys. 2013;113:1–7.
  • Kim S-U, Lee S, Na J-H, et al. Tunable liquid crystal lens array by encapsulation with a photo-reactive polymer for short focal length. Opt Commun. 2014;313:329–332.
  • Goodman JW. Introduction to fourier optics. Englewood (CO): Roberts and Company Publishers; 2005.
  • Jeng S-C, Hwang S-J, Horng J-S, et al. Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film. Opt Express. 2010;18:26325–26331.
  • Huang Y-H, Ko S-W, Chu S-C, et al. High-efficiency Fresnel lens fabricated by axially symmetric photoalignment method. Appl Opt. 2012;51:7739–7744.
  • Lou Y, Liu Q, Wang H, et al. Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens. Appl Opt. 2010;49:4995–5000.
  • Patel JS, Rastani K. Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays. Opt Lett. 1991;16:532–534.
  • Wang XQ, Fan F, Du T, et al. Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer. Appl Opt. 2014;53:2026–2029.
  • Yu C-J, Kim D-W, Kim J, et al. Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration. Opt Lett. 2005;30:1995–1997.
  • Li K, Robertson B, Pivnenko M, et al. High quality micro liquid crystal phase lenses for full resolution image steering in auto-stereoscopic displays. Opt Express. 2014;22:21679–21689.
  • Kao -Y-Y, Chao -PC-P, Tu T-Y. A new LCL-lens array with electrodes of interlaced structure to be applied for auto-stereoscopic 3D displays. Microsyst Technol. 2014;20:1425–1434.
  • Chang Y-C, Jen T-H, Ting C-H, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Opt Express. 2014;22:2714–2724.
  • Kim J, Kim S-U, Lee B-Y, et al. Lenticular lens array based on liquid crystal with a polarization-dependent focusing effect for 2D–3D image applications. J Inf Disp. 2015;16:11–15.
  • Lin YH, Chen MS. A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses. J Display Technol. 2012;8:401–404.
  • Li H, Pan F, Wu Y, et al. Three-dimensional imaging based on electronically adaptive liquid crystal lens. Appl Opt. 2014;53:7916–7923.
  • Chen H-S, Wang Y-J, Chen P, et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens. Opt Express. 2015;23:28154–28162.
  • Algorri JF, Urruchi V, Bennis N, et al. Integral imaging capture system with tunable field of view based on liquid crystal microlenses. IEEE Photon Technol Lett. 2016;28:1854–1857.
  • Ferstl M, Frisch A-M. Static and dynamic Fresnel zone lenses for optical interconnections. J Mod Opt. 1996;43:1451–1462.
  • Hain M, Glöckner R, Bhattacharya S, et al. Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup. Opt Commun. 2001;188:291–299.
  • Hsu C-J, Chih S-Y, Jhang -J-J, et al. Coaxially bifocal liquid crystal lens with switchable optical aperture. Liq Cryst. 2016;43:336–342.
  • Lin H-C, Collings N, Chen M-S, et al. A holographic projection system with an electrically tuning and continuously adjustable optical zoom. Opt Express. 2012;20:27222–27229.
  • Hassanfiroozi A, Huang Y-P, Javidi B, et al. Hexagonal liquid crystal lens array for 3D endoscopy. Opt Express. 2015;23:971–981.
  • Wang Y-J, Shen X, Lin Y-H, et al. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens. Opt Lett. 2015;40:3564–3567.
  • Hassanfiroozi A, Huang Y-P, Javidi B, et al. Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system. Opt Express. 2016;24:8527–8538.
  • Lin Y-H, Chen H-S. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt Express. 2013;21:9428–9436.
  • Lin Y-H, Ren H, Wu Y-H, et al. Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure. Opt Express. 2005;13:8746–8752.
  • Fuh AY-G, Ko S-W, Huang S-H, et al. Polarization-independent liquid crystal lens based on axially symmetric photoalignment. Opt Express. 2011;19:2294–2300.
  • Bao R, Cui C, Yu S, et al. Polarizer-free imaging of liquid crystal lens. Opt Express. 2014;22:19824–19830.
  • Woodgate GJ, Harrold J. Late-news poster: a new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses. SID Symp Dig Tech Pap. 2005;36:378–381.
  • Krijn MPCM, De Zwart ST, De Boer DKG, et al. 2-D/3-D displays based on switchable lenticulars. J Soc Inf Disp. 2008;16:847.
  • Hong H, Jung S, Lee B, et al. Electric-field-driven LC lens for 3-D/2-D autostereoscopic display. J Soc Inf Disp. 2009;17:399–406.
  • Liang D, Luo J, Zhao W, et al. 2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens. J Display Technol. 2012;8:609–612.
  • Wang X, Ren H, Wang Q. Polymer network liquid crystal (PNLC) lenticular microlens array with no surface treatment. J Display Technol. 2016;12:773–778.
  • Kim H, Kim J, Kim J, et al. Liquid crystal-based lenticular lens array with laterally shifting capability of the focusing effect for autostereoscopic displays. Opt Commun. 2015;357:52–57.
  • Kim SG, Kim SM, Kim YS, et al. Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen. Appl Phys Lett. 2007;90:1–4.
  • Lee Y-J, Jo SI, Kim J-H, et al. Fast eight-domain patterned vertical alignment mode with reactive mesogen for a single-transistor-driving. Jpn J Appl Phys. 2010;49:30209.
  • Huang Y-P, Chen C-W, Huang Y-C. Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display. J Display Technol. 2012;8:650–655.
  • Jen T-H, Shen X, Yao G, et al. Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens. Opt Express. 2015;23:18415–18421.
  • Yoo H. Axially moving a lenslet array for high-resolution 3D images in computational integral imaging. Opt Express. 2013;21:8873–8878.
  • Chen C-W, Huang Y-P, Chen P-C. Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display. J Display Technol. 2012;8:559–561.
  • Kim S-U, Kim J, Suh J-H, et al. Concept of active parallax barrier on polarizing interlayer for near-viewing autostereoscopic displays. Opt Express. 2016;24:25010–25018.
  • Valley P, Savidis N, Schwiegerling J, et al. Adjustable hybrid diffractive/refractive achromatic lens. Opt Express. 2011;19:7468–7479.
  • Martinez JL, Fernandez EJ, Prieto PM, et al. Chromatic aberration control with liquid crystal spatial phase modulators. Opt Express. 2017;25:9793–9801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.