741
Views
10
CrossRef citations to date
0
Altmetric
INVITED ARTICLE

Liquid-crystalline fork-like dendrons

& ORCID Icon
Pages 1816-1829 | Received 04 May 2017, Accepted 10 Jun 2017, Published online: 29 Jun 2017

References

  • Demus D, Goodby JW, Gray GW, et al., editors. Handbook of liquid crystals. Weinheim: Wiley-VCH; 1998.
  • Goodby JW, Collings PJ, Kato T, et al., editors. Handbook of liquid crystals. 2nd ed. Weinheim: Wiley-VCH; 2014.
  • Tschierske C. Micro-segregation, molecular shape and molecular topology - partners for the design of liquid crystalline materials with complex mesophase morphologies. J Mater Chem. 2001;11:2647–2671.
  • Kato T. Self-assembly of phase-segregated liquid crystal structures. Science. 2002;295:2414–2418.
  • Kato T, Yoshio M, Ichikawa T, et al. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater. 2017;2:17001.
  • Saez IM, Goodby JW. Supermolecular liquid crystals. J Mater Chem. 2005;15:26–40.
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2006;45:38–68.
  • Saez IM, Goodby JW. Supermolecular liquid crystals. Struct Bonding. 2008;128:1–62.
  • Kato T, Yasuda T, Kamikawa Y, et al. Self-assembly of functional columnar liquid crystals. Chem Commun. 2009;729–739.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47:2754–2787.
  • Donnio B, Buathong S, Bury I, et al. Liquid-crystalline dendrimers. Chem Soc Rev. 2007;36:1495–1513.
  • Yoshizawa A. Unconventional liquid crystal oligomers with a hierarchical structure. J Mater Chem. 2008;18:2877–2889.
  • Li W, Wu L. Liquid crystals from star-like clusto-supramolecular macromolecules. Polym Int. 2014;63:1750–1764.
  • Sawamura M, Kawai K, Matsuo Y, et al. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature. 2002;419:702–705.
  • Matsuo Y, Muramatsu A, Hamasaki R, et al. Stacking of molecules possessing a fullerene apex and a cup-shaped cavity connected by a silicon connection. J Am Chem Soc. 2004;126:432–433.
  • Matsuo Y, Muramatsu A, Kamikawa Y, et al. Synthesis and structural, electrochemical, and stacking properties of conical molecules possessing buckyferrocene on the apex. J Am Chem Soc. 2006;128:9586–9587.
  • Funahashi M, Kato T. Design of liquid crystals: from a nematogen to thiophene-based π-conjugated mesogens. Liq Cryst. 2015;42:909–917.
  • Funahashi M, Zhang F, Tamaoki N, et al. Ambipolar transport in the smectic E phase of 2-propyl-5ʹ’-hexynylterthiophene derivative over a wide temperature range. ChemPhysChem. 2008;9:1465–1473.
  • Nuita M, Sakuda J, Hirai Y, et al. Hole transport of a liquid-crystalline phenylterthiophene derivative exhibiting the nematic phase at ambient temperature. Chem Lett. 2011;40:412–413.
  • Funahashi M, Tamaoki N. Effect of pretransitional organization in chiral nematic of oligothiophene derivatives on their carrier transport characteristics. Chem Mater. 2007;19:608–617.
  • Kimura M, Yasuda T, Kishimoto K, et al. Oligothiophene-based liquid crystals exhibiting smectic A phases in wider temperature ranges. Chem Lett. 2006;35:1150–1151.
  • Yazaki S, Funahashi M, Kato T. An electrochromic nanostructured liquid crystal consisting of π-conjugated and ionic moieties. J Am Chem Soc. 2008;130:13206–13207.
  • Yazaki S, Funahashi M, Kagimoto J, et al. Nanostructured liquid crystals combining ionic and electronic functions. J Am Chem Soc. 2010;132:7702–7708.
  • Yasuda T, Kishimoto K, Kato T. Columnar liquid crystalline π-conjugated oligothiophenes. Chem Commun. 2006;3399–3401.
  • Yasuda T, Ooi H, Morita J, et al. π-Conjugated oligothiophene-based polycatenar liquid crystals: self-organization and photoconductive, luminescent, and redox properties. Adv Funct Mater. 2009;19:411–419.
  • Malthete J, Billard J. Mesomorphic derivatives of ferrocene. Mol Cryst Liq Cryst. 1976;34:117–121.
  • Sakuda J, Yoshio M, Ichikawa T, et al. 2D assemblies of ionic liquid crystals based on imidazolium moieties: formation of ion-conductive layers. New J Chem. 2015;39:4471–4477.
  • Sakuda J, Hosono E, Yoshio M, et al. Liquid-crystalline electrolytes for lithium-ion batteries: ordered assemblies of a mesogen-containing carbonate and a lithium salt. Adv Funct Mater. 2015;25:1206–1212.
  • Högberg D, Soberats B, Uchida S, et al. Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells. Chem Mater. 2014;26:6496–6502.
  • Högberg D, Soberats B, Yatagai R, et al. Liquid-crystalline dye-sensitized solar cells: design of two-dimensional molecular assemblies for efficient ion transport and thermal stability. Chem Mater. 2016;28:6493–6500.
  • Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–7647.
  • Wooley KL, Hawker CJ, Pochan JM, et al. Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules. 1993;26:1514–1519.
  • Ponomarenko SA, Rebrov EA, Bobrovsky AY, et al. Liquid crystalline carbosilane dendrimers: first generation. Liq Cryst. 1996;21:1–12.
  • Baars MWPL, Söntjens SHM, Fischer HM, et al. Liquid-crystalline properties of poly(propylene imine) dendrimers functionalized with cyanobiphenyl mesogens at the periphery. Chem Eur J. 1998;4:2456–2466.
  • Chuard T, Deschenaux R. First fullerene[60]-containing thermotropic liquid crystal. Helv Chim Acta. 1996;79:736–741.
  • Chuard T, Deschenaux R, Hirsch A. Schönberger. A liquid-crystalline hexa-adduct of [60]fullerene. Chem Commun. 1999;2103–2104.
  • Even M, Heinrich B, Guillon D, et al. A mixed fullerene-ferrocene thermotropic liquid crystal: synthesis, liquid-crystalline properties, supramolecular organization and photoinduced electron transfer. Chem Eur J. 2001;7:2595–2604.
  • Deschenaux R, Donnio B, Guillon D. Liquid-crystalline fullerodendrimers. New J Chem. 2007;31:1064–1073.
  • Saez IM, Goodby JW. Supermolecular liquid crystal dendrimers based on the octasilsesquioxane core. Liq Cryst. 1999;26:1101–1105.
  • Mehl GH, Goodby JW. Liquid-crystalline, substituted octakis(dimethylsiloxy)octasilsesquioxanes: oligomeric supermolecular materials with defined topology. Angew Chem Int Ed Engl. 1996;35:2641–2643.
  • Saez IM, Goodby JW, Richardson RM. A liquid crystalline silsesquioxane dendrimer exhibiting chiral nematic and columnar mesophases. Chem Eur J. 2001;7:2758–2764.
  • Saez IM, Goodby JW. Chiral nematic octasilsesquioxanes. J Mater Chem. 2001;11:2845–2851.
  • Saez IM, Goodby JW. Design and properties of “Janus-like” supermolecular liquid crystals. Chem Commun. 2003;1726–1727.
  • Saez IM, Goodby JW. “Janus” supermolecular liquid crystals - giant molecules with hemispherical architectures. Chem Eur J. 2003;9:4869–4877.
  • Kouwer PHJ, Mehl GH. Full miscibility of disk- and rod-shaped mesogens in the nematic phase. J Am Chem Soc. 2003;125:11172–11173.
  • Cardinaels T, Driesen K, Parac-Vogt TN, et al. Design of high coordination number metallomesogens by decoupling of the complex-forming and mesogenic groups: nematic and lamello-columnar mesophases. Chem Mater. 2005;17:6589–6598.
  • Yamane S, Sagara Y, Kato T. A thermoresponsive photoluminescent smectic liquid crystal: change of photoluminescent color on the smectic-smectic phase transition. Chem Commun. 2009;3597–3599.
  • Yamane S, Sagara Y, Kato T. Steric effects on excimer formation for photoluminescent smectic liquid-crystalline materials. Chem Commun. 2013;49:3839–3841.
  • Yamane S, Sagara Y, Mutai T, et al. Mechanochromic luminescent liquid crystals based on a bianthryl moiety. J Mater Chem C. 2013;1:2648–2656.
  • Neaime C, Prévôt M, Amela-Cortes M, et al. Voltage-driven photoluminescence modulation of liquid-crystalline hybridized ZnO nanoparticles. Chem Eur J. 2014;20:13770–13776.
  • Yin S, Sun H, Yan Y, et al. Hydrogen-bonding-induced supramolecular liquid crystals and luminescent properties of europium-substituted polyoxometalate hybrids. J Phys Chem B. 2009;113:2355–2364.
  • Molard Y, Dorson F, Cîrcu V, et al. Clustomesogens: liquid crystal materials containing transition-metal clusters. Angew Chem Int Ed. 2010;49:3351–3355.
  • Huitorel B, Benito Q, Fargues A, et al. Mechanochromic luminescence and liquid crystallinity of molecular copper clusters. Chem Mater. 2016;28:8190–8200.
  • Terazzi E, Bourgogne C, Welter R, et al. Single-molecule magnets with mesomorphic lamellar ordering. Angew Chem Int Ed. 2008;47:490–495.
  • Terazzi E, Rogez G, Gallani J-L, et al. Supramolecular organization and magnetic properties of mesogen-hybridized mixed-valent manganese single molecule magnets [Mn III 8 Mn IV 4 O 12 (Lx,y,z-CB) 16 (H2O)4. J Am Chem Soc. 2013;135:2708–2722.
  • Demortière A, Buathong S, Pichon BP, et al. Nematic-like organization of magnetic mesogen-hybridized nanoparticles. Small. 2010;6:1341–1346.
  • Wang Y, Cabry CP, Xiao M, et al. Blue and green phosphorescent liquid-crystalline iridium complexes with high hole mobility. Chem Eur J. 2016;22:1618–1621.
  • Soberats B, Uchida E, Yoshio M, et al. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystals. J Am Chem Soc. 2014;136:9552–9555.
  • Kim D-Y, Lee S-A, Choi Y-J, et al. Thermal- and photo-induced phase-transition behaviors of a tapered dendritic liquid crystal with photochromic azobenzene mesogens and a bicyclic chiral center. Chem Eur J. 2014;20:5689–5695.
  • Kim D-Y, Lee S-A, Kang D-G, et al. Photoresponsive carbohydrate-based giant surfactants: automatic vertical alignment of nematic liquid crystal for the remote-controllable optical device. ACS Appl Mater Interfaces. 2015;7:6195–6204.
  • Choi Y-J, Kim D-Y, Park M, et al. Self-assembled hierarchical superstructures from the benzene-1,3,5-tricarboxamide supramolecules for the fabrication of remote-controllable actuating and rewritable films. ACS Appl Mater Interfaces. 2016;8:9490–9498.
  • Zhu Y, Wang X. Synthesis and photoresponsive properties of two liquid crystalline polymers bearing branched azobenzene-containing side chains. Polym Chem. 2013;4:5108–5118.
  • Barrio J, Blasco E, Toprakcioglu C, et al. Self-assembly and photoinduced optical anisotropy in dendronized supramolecular azopolymers. Macromolecules. 2014;47:897–906.
  • Sakuda J, Yasuda T, Kato T. Liquid-crystalline catenanes and rotaxanes. Isr J Chem. 2012;52:854–862.
  • Baranoff ED, Voignier J, Yasuda T, et al. A liquid-crystalline [2]catenane and its copper(I) complex. Angew Chem Int Ed. 2007;46:4680–4683.
  • Baranoff ED, Voignier J, Yasuda T, et al. Macrocycle-based liquid crystals: a study of topological effects on mesomorphism. Mol Cryst Liq Cryst. 2009;509:165–172.
  • Aprahamian I, Yasuda T, Ikeda T, et al. A liquid-crystalline bistable [2]rotaxane. Angew Chem Int Ed. 2007;46:4675–4679.
  • Aprahamian I, Miljanić OŠ, Dichtel WR, et al. Clicked interlocked molecules. Bull Chem Soc Jpn. 2007;80:1856–1869.
  • Yasuda T, Tanabe K, Tsuji T, et al. A redox-switchable [2]rotaxane in a liquid-crystalline state. Chem Commun. 2010;46:1224–1226.
  • Pitto-Barry A, Barry NPE, Russo V, et al. Designing supramolecular liquid-crystalline hybrids from pyrenyl-containing dendrimers and arene ruthenium metallacycles. J Am Chem Soc. 2014;136:17616–17625.
  • Kato T. Hydrogen-bonded liquid crystals: molecular self-assembly for dynamically functional materials. Struct Bonding. 2000;96:95–146.
  • Rowan SJ, Mather PT. Supramolecular interactions in the formation of thermotropic liquid crystalline polymers. Struct Bonding. 2008;128:119–149.
  • Gin DL, Bara JE, Noble RD, et al. Polymerized lyotropic liquid crystal assemblies for membrane applications. Macromol Rapid Commun. 2008;29:367–389.
  • Bowlas CJ, Bruce DW, Seddon KR. Liquid-crystalline ionic liquids. Chem Commun. 1996;1625–1626.
  • Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc. 2004;126:994–995.
  • Yoshio M, Kagata T, Hoshino K, et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J Am Chem Soc. 2006;128:5570–5577.
  • Kato T, Fréchet JMJ. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J Am Chem Soc. 1989;111:8533–8534.
  • Kihara H, Kato T, Uryu T, et al. Supramolecular liquid-crystalline networks built by self-assembly of multifunctional hydrogen-bonding molecules. Chem Mater. 1996;8:961–968.
  • Melánova K, Cvejn D, Bureš F, et al. Organization and intramolecular charge-transfer enhancement in tripodal tris[(pyridine-4-yl)phenyl]amine push–pull molecules by intercalation into layered materials bearing acidic functionalities. Dalton Trans. 2014;43:10462–10470.
  • Kato T, Fréchet JMJ, Wilson PG, et al. Hydrogen-bonded liquid crystals. Novel mesogens incorporating nonmesogenic bipyridyl compounds through complexation between H-bond donor and acceptor moieties. Chem Mater. 1993;5:1094–1100.
  • Kato T, Uryu T, Kaneuchi F, et al. Hydrogen-bonded liquid crystals built from hydrogen-bonding donors and acceptors. Infrared study on the stability of the hydrogen bond between carboxylic acid and pyridyl moieties. Liq Cryst. 1993;14:1311–1317.
  • Kato T, Uryu T, Kaneuchi F, et al. Hydrogen-bonded liquid crystals built from hydrogen-bonding donors and acceptors. Infrared study on the stability of the hydrogen bond between carboxylic acid and pyridyl moieties. Liq Cryst. 2006;33:1434–1437.
  • Kato T, Jin C, Kaneuchi F, et al. Effect of the molecular orientation on the stability of hydrogen-bonded benzoic acid dimers. Infrared study of liquid-crystalline 4-alkylbenzoic acids. Bull Chem Soc Jpn. 1993;66:3581–3584.
  • Kato T, Fréchet JMJ. Development of supramolecular hydrogen-bonded liquid crystals and its impact on liquid-crystalline and materials science. Liq Cryst. 2006;33:1429–1433.
  • Kato T, Fréchet JMJ. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain. Macromolecules. 1989;22:3818–3819.
  • Kato T, Fukumasa M, Fréchet JMJ. Supramolecular liquid-crystalline complexes exhibiting room-temperature mesophases and electrooptic effects. Hydrogen-bonded mesogens derived from alkylpyridines and benzoic acids. Chem Mater. 1995;7:368–372.
  • Kato T, Tanabe K. Electro- and photoactive molecular assemblies of liquid crystals and physical gels. Chem Lett. 2009;38:634–639.
  • Sagara Y, Yamane S, Mitani M, et al. Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater. 2016;28:1073–1095.
  • Broer DJ, Bastiaansen CMW, Debije MG, et al. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew Chem Int Ed. 2012;51:7102–7109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.