369
Views
5
CrossRef citations to date
0
Altmetric
Invited Article

Liquid crystalline glycosteroids and acyl steroid glycosides (ASG)

, , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 2089-2107 | Received 02 May 2017, Published online: 07 Jul 2017

References

  • Goodby JW, Görtz V, Cowling SJ, et al. Thermotropic liquid crystalline glycolipids. Chem Soc Rev. 2007;36(12):1971–2032.
  • Shearman GC, Ces O, Templer RH, et al. Inverse lyotropic phases of lipids and membrane curvature. J Phys Condens Matter. 2006;18(28):1105–1124.
  • Zocher H, Birstein V. Contributions to the knowledge of mesophases (between physical states); On mutual storage of spatial elements of a mesophase. Z Phys Chem. 1929;A142:113–125.
  • Jeffrey GA. Carbohydrate liquid crystals. Acc Chem Res. 1986;19(6):168–173.
  • Praefcke K, Levelut AM, Kohne B, et al. First carbohydrate liquid crystals of columnar structure. Liq Cryst. 1989;6(3):263–270.
  • Tschierske C. Molecular self-organization of amphotropic liquid crystals. Prog Polym Sci. 1996;21(5):775–852.
  • van Doren HA, Smits E, Pestman JM, et al. Mesogenic saccharides. From aldoses to liquid crystals and surfactants. Chem Soc Rev. 2000;29(3):183–199.
  • Goodby JW, Pfannemüller B, Welte W, et al. Liquid‐crystalline glycolipids: towards understanding the roles of liquid crystals in biological and life processes. Liq Cryst. 2006;33(11–12):1229–1245.
  • Goodby JW. Liquid crystal phases exhibited by some monosaccharides. Mol Cryst Liq Cryst. 1984;110(1–4):205–219.
  • Barrall E, Grant B, Oxsen M, et al. The 1-N-Alkyl-α-D-glucopyranosides. A new series of thermotropic liquid crystals. Org Coat Plat Chem. 1979;40:67–74.
  • Miethchen R, Holz J, Prade H, et al. Amphiphilic and mesogenic carbohydrates-II. Sysnthesis and characterisation of mono-o-(n-alkyl)-d-glucose derivates. Tetrahedron. 1992;48(15):3061–3068.
  • Vill V, Böcker T, Thiem J, et al. Studies on liquid-crystalline glycosides. Liq Cryst. 1989;6(3):349–356.
  • Goodby JW, Watson MJ, Mackenzie G, et al. The dependence of mesomorphic behaviour on the extent of hydrogen-bonding in saccharide derived polyols. Liq Cryst. 1998;25(2):139–147.
  • West JJ, Bonsergent G, Mackenzie G, et al. The effect of molecular shape and microphase segregation on the formation of liquid crystal phases in poly-ols. Mol Cryst Liq Cryst. 2001;362(1):23–44.
  • Queneau Y, Gagnaire J, West JJ, et al. The effect of molecular shape on the liquid crystal properties of the mono-O-(2-hydroxydodecyl) sucroses. J Mater Chem. 2001;11(11):2839–2844.
  • Molinier V, Kouwer PHJ, Queneau Y, et al. A bilayer to monolayer phase transition in liquid crystal glycolipids. Chem Commun. 2003;23:2860–2861.
  • Molinier V, Kouwer PJJ, Fitremann J, et al. Self‐organizing properties of monosubstituted sucrose fatty acid esters: the effects of chain length and unsaturation. Chem Eur J. 2006;12(13):3547–3557.
  • Molinier V, Kouwer PJJ, Fitremann J, et al. Shape dependence in the formation of condensed phases exhibited by disubstituted sucrose esters. Chem Eur J. 2007;13(6):1763–1775.
  • Singh MK, Xu R, Moebs S, et al. Hydrophobic and hydrophilic balance and its effect on mesophase behaviour in hydroxyalkyl ethers of methyl glucopyranoside. Chem Eur J. 2013;19(16):5041–5049.
  • Gagnaire J, Toraman G, Descotes G, et al. Synthesis in water of amphiphilic sucrose hydroxyalkyl ethers. Tetrahedron Lett. 1999;40(14):2757–2760.
  • Gagnaire J, Cornet A, Bouchu A, et al. Study of the competition between homogeneous and interfacial reactions during the synthesis of surfactant sucrose hydroxyalkyl ethers in water. Colloids Surf A. 2000;172(1):125–138.
  • Danel M, Gagnaire J, Queneau Y. Interfacial aspects of the catalysis of the synthesis of amphiphilic sucrose ethers from 1, 2-epoxydodecane and 1, 2-epoxydodecan-3-ol in water. J Mol Catal. 2002;184(1):131–138.
  • Pierre R, Adam I, Fitremann J, et al. Catalytic etherification of sucrose with 1, 2-epoxydodecane: investigation of homogeneous and heterogeneous catalysts. Comptes Rendus Chimie. 2004;7(2):151–160.
  • Villandier N, Adam I, Jérôme F, et al. Selective synthesis of amphiphilic hydroxyalkylethers of disaccharides over solid basic catalysts: influence of the superficial hydrophilic–lipophilic balance of the catalyst. J Mol Catal. 2006;259(1):67–77.
  • Queneau Y, Fitremann J, Trombotto S. The chemistry of unprotected sucrose: the selectivity issue. Comptes Rendus Chimie. 2004;7(2):177–188.
  • Queneau Y, Jarosz S, Lewandowski B, et al. Sucrose chemistry and applications of sucrochemicals. Adv Carbohydr Chem Biochem. 2008;61:217–292.
  • Queneau Y, Chambert S, Besset C, et al. Recent progress in the synthesis of carbohydrate-based amphiphilic materials: the examples of sucrose and isomaltulose. Carbohydr Res. 2008;343(12):1999–2009.
  • Muller AS, Gagnaire J, Queneau Y, et al. Winsor behaviour of sucrose fatty acid esters: choice of the cosurfactant and effect of the surfactant composition. Colloids Surf A. 2002;203(1):55–66.
  • Molinier V, Fenet B, Fitremann J, et al. PFGSE–NMR study of the self-diffusion of sucrose fatty acid monoesters in water. J Coll Interf Sci. 2005;286(1):360–368.
  • Molinier V, Fenet B, Fitremann J, et al. Concentration measurements of sucrose and saccharide surfactants solutions by using the 1 H NMR ERETIC method. Carbohydr Res. 2006;341(11):1890–1895.
  • Potier P, Bouchu A, Descotes G, et al. Lipase-catalysed selective synthesis of sucrose mixed diesters. Synthesis. 2001;2001(3):458–462.
  • Potier P, Bouchu A, Gagnaire J, et al. Proteinase N-catalysed regioselective esterification of sucrose and other mono-and disaccharides. Tetrahedron Asymmetry. 2001;12(17):2409–2419.
  • Molinier V, Wisniewski K, Bouchu A, et al. Transesterification of sucrose in organic medium: study of acyl group migrations. J Carbohydr Chem. 2003;22(7–8):657–669.
  • Molinier V, Fitremann J, Bouchu A, et al. Sucrose esterification under Mitsunobu conditions: evidence for the formation of 6-O-acyl-3′, 6′-anhydrosucrose besides mono and diesters of fatty acids. Tetrahedron Asymmetry. 2004;15(11):1753–1762.
  • Thévenet S, Wernicke A, Belniak S, et al. Esterification of unprotected sucrose with acid chlorides in aqueous medium. Kinetic reactivity vs acyl- or alkyloxycarbonyl- group migrations. Carbohydr Res. 1999;318(1–4):52–56.
  • Besset C, Chambert S, Mandle RJ, et al. Remarkable preference for disubstitution in glycolipids self –assemblies. Forthcoming.
  • Yang Z, Xu R, Chambert S, et al. Carbohydrate steroid hybrid architectures: the viewpoint of amphiphilicity and self-organisation. In: Rauter AP, Lindhorst TK, Queneau Yeditors. Carbohydrate chemistry, chemical and biological approaches, specialist periodical reports. Cambridge: Royal Society of Chemistry; 2016. p. 274–312.
  • Salway AH. CVIII.—the synthetical preparation of the d-glucosides of sitosterol, cholesterol, and some fatty alcohols. J Chem Soc Trans. 1913;103:1022–1029.
  • Sun A, Xu X, Lin J, et al. Neuroprotection by saponins. Phyther Res. 2015;29:187–200.
  • Munafo JP Jr, Gianfagna TJ. Chemistry and biological activity of steroidal glycosides from the Lilium genus. Nat Prod Rep. 2015;32(3):454–477.
  • Challinor VL, De Voss JJ. Open-chain steroidal glycosides, a diverse class of plant saponins. Nat Prod Rep. 2013;30(3):429–454.
  • Faizal A, Geelen D. Saponins and their role in biological processes in plants. Phytochem Rev. 2013;12:877–893.
  • Tang Y, Li N, Duan J, et al. Structure, bioactivity, and chemical synthesis of OSW-1 and other steroidal glycosides in the genus ornithogalum. Chem Rev. 2013;113(7):5480–5514.
  • Schwarz S, Xavier NM, Rauter AP. Triterpene/steroid glycoconjugates: natural occurrence, synthesis and biological activities. In: Rauter AP, Lindhorst TK, editors. Carbohydrate chemistry, chemical and biological approaches. Cambridge: Royal Society of Chemistry; 2012. p. 326–373.
  • Yu B, Sun J, Yang X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc Chem Res. 2012;45:1227–1236.
  • Grille S, Zaslawski A, Thiele S, et al. The functions of steryl glycosides come to those who wait: recent advances in plants, fungi, bacteria and animals. Prog Lipid Res. 2010;49(3):262–288.
  • Ivanchina NV, Kicha AA, Stonik VA. Steroid glycosides from marine organisms. Steroids. 2011;76(5):425–454.
  • Salunke DB, Hazra BG, Pore VS. Steroidal conjugates and their pharmacological applications. Curr Med Chem. 2006;13:813–847.
  • Kawashima K, Mimaki Y, Sashida Y. Schubertosides AD, new (22s)-hydroxycholestane glycosides from Allium schubertii. Chem Pharm Bull. 1991;39(10):2761–2763.
  • Ma Y, Li Z, Shi H, et al. Assembly of digitoxin by gold (I)-catalyzed glycosidation of glycosyl o-alkynylbenzoates. J Org Chem. 2011;76(23):9748–9756.
  • Yang Y, Laval S, Yu B. Chemical synthesis of saponins. In: Horton D, editor. Advances in carbohydrate chemistry and biochemistry. Vol. 1. London: Academic Press; 2014. p. 137–226.
  • Heasley B. Chemical synthesis of the cardiotonic steroid glycosides and related natural products. Chem Eur J. 2012;18(11):3092–3120.
  • Faivre V, Bardonnet PL, Boullanger P, et al. Self-organization of synthetic cholesteryl oligoethyleneglycol glycosides in water. Langmuir. 2009;25(16):9424–9431.
  • Iveson P, Parke DV. The preparation and chemical properties of some glucuronyl esters of β-glycyrrhetic acid (3β-hydroxy-11-oxo-olean-12-en-30-oic acid) and its derivatives. J Chem Soc (C). 1970;(15):2038–2042.
  • Choteau F, Durand G, Ranchon-Cole I, et al. Cholesterol-based α-phenyl-N-tert-butyl nitrone derivatives as antioxidants against light-induced retinal degeneration. Bioorg Med Chem Lett. 2010;20(24):7405–7409.
  • Rivera DG, Pérez-Labrada K, Lambert L, et al. Carbohydrate–steroid conjugation by Ugi reaction: one-pot synthesis of triple saccharide/pseudo-peptide/spirostane hybrids. Carbohydr Res. 2012;359:102–110.
  • Beaulieu R, Gottis S, Meyer C, et al. Cholesteryl and diosgenyl glycosteroids: synthesis and characterization of new smectic liquid crystals. Carbohydr Res. 2015;404:70–78.
  • Hellfritsch C, Brockhoff A, Stähler F, et al. Human psychometric and taste receptor responses to steviol glycosides. J Agric Food Chem. 2012;60(27):6782–6793.
  • Papadopoulou K, Melton RE, Leggett M, et al. Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci. 1999;96(22):12923–12928.
  • Mylona P, Owatworakit A, Papadopoulou K, et al. Sad3 and Sad4 are required for saponin biosynthesis and root development in oat. Plant Cell. 2008;20(1):201–212.
  • Ma X, Yu B, Hui Y, et al. Synthesis of OSW-1 analogues and a dimer and their antitumor activities. Bioorg Med Chem Lett. 2001;11(16):2153–2156.
  • Fujioka T, Iwamoto M, Iwase Y, et al. Studies on the constituents of Actinostemma lobatum MAXIM. V.: structures of lobatosides B, E, F and G, the dicrotalic acid esters of bayogenin bisdesmosides isolated from the Herb. Chem Pharm Bull. 1989;37(9):2355–2360.
  • Zhu C, Tang P, Yu B. Total synthesis of lobatoside E, a potent antitumor cyclic triterpene saponin. J Am Chem Soc. 2008;130(18):5872–5873.
  • Nyström L, Schär A, Lampi AM. Steryl glycosides and acylated steryl glycosides in plant foods reflect unique sterol patterns. Eur J Lipid Sci Technol. 2012;114(6):656–669.
  • Cheriet T, Mancini I, Seghiri R, et al. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae). Nat Prod Res. 2015;29(17):1589–1613.
  • Lepage M. Isolation and characterization of an esterified form of steryl glucoside. J Lipid Res. 1964;5(4):587–592.
  • Grunwald C. Effects of free sterols, steryl ester, and steryl glycoside on membrane permeability. Plant Physiol. 1971;48(5):653.
  • Mudd JB, McManus TT. Effect of steryl glycosides on the phase transition of dipalmitoyl lecithin. Plant Physiol. 1980;65(1):78–80.
  • Webb MS, Irving TC, Steponkus PL. Effects of plant sterols on the hydration and phase behavior of DOPE/DOPC mixtures. Biochim Biophys Acta - Biomembr. 1995;1239(2):226–238.
  • Halling KK, Ramstedt B, Slotte JP. Glycosylation induces shifts in the lateral distribution of cholesterol from ordered towards less ordered domains. Biochim Biophys Acta - Biomembr. 2008;1778(4):1100–1111.
  • Schrick K, Shiva S, Arpin JC, et al. Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids. 2012;47(2):185–193.
  • Wang HJ, Cheng WC, Cheng HH, et al. Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Mol Microbiol. 2012;83(1):67–84.
  • Davis RA, Lin CH, Gervay-Hague J. Chemoenzymatic synthesis of cholesteryl-6-O-tetradecanoyl-α-d-glucopyranoside: a product of host cholesterol efflux promoted by Helicobacter pylori. Chem Commun. 2012;48(72):9083–9085.
  • Ben-Menachem G, Kubler-Kielb J, Coxon B, et al. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci. 2003;100(13):7913–7918.
  • Kulkarni SS, Gervay-Hague J. Two-step synthesis of the immunogenic bacterial glycolipid BbGL1. Org Lett. 2008;10(21):4739–4742.
  • Rachedi FA, Chambert S, Ferkous F, et al. The unusual self-organising behaviour of a glycosteroidal bolaphile. Chem Commun. 2009;(42):6355–6357.
  • Xu R, Ali-Rachedi F, Xavier NM, et al. Self-organizing behaviour of glycosteroidal bolaphiles: insights into lipidic microsegregation. Org Biomol Chem. 2015;13(3):783–792.
  • Silipo A, Vitiello G, Gully D, et al. Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nat Commun. 2014;5:5106.
  • Molinaro A, Holst O, Di Lorenzo F, et al. Chemistry of lipid A: at the heart of innate immunity. Chem Eur J. 2015;21(2):500–519.
  • Grassert V, Vill V. A note on the melting point of α-solanine: the solution to a riddle. Liq Cryst Today. 1994;4(1):4–5.
  • Menger FM, Keiper JS. Digitonin as a chemical trigger for the selective transformation of giant vesicles. Angew Chem Int Ed. 1998;37(24):3433–3435.
  • Saha A, Adamcik J, Bolisetty S, et al. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features. Angew Chem Int Ed. 2015;127(18):5498–5502.
  • Sánchez-Ferrer A, Adamcik J, Mezzenga R. Edible supramolecular chiral nanostructures by self-assembly of an amphiphilic phytosterol conjugate. Soft Matter. 2012;8(1):149–155.
  • Ponpipom MM, Bugianesi RL, Shen TY. Glycolipids as potential immunologic adjuvants. J Med Chem. 1980;23(11):1184–1188.
  • Chabala JC, Shen TY. The preparation of 3-cholesteryl 6-(thioglycosyl) hexyl ethers and their incorporation into liposomes. Carbohydr Res. 1978;67(1):55–63.
  • Ponpipom MM, Bugianesi L, Shen TY. Cell surface carbohydrates for targeting studies. Can J Chem. 1980;58(3):214–220.
  • Ponpipom MM, Wu MS, Robbins JC, et al. Synthesis of 6-(5-cholesten-3β-yloxy) hexyl 4-O-(6-deoxy-β-D-galactopyranosyl)-1-thio-β-D-glucopyranoside and derivatives thereof for in vivo liposome studies. Carbohydr Res. 1983;118:47–55.
  • Mauk MR, Gamble RC, Baldeschwieler JD. Vesicle targeting: timed release and specificity for leukocytes in mice by subcutaneous injection. Science. 1980;207(4428):309–311.
  • Mauk MR, Gamble RC, Baldeschwieler JD. Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leukocytes in mice. Proc Natl Acad Sci. 1980;77(8):4430–4434.
  • Muramatsu K, Masumizu T, Maitani Y, et al. Electron spin resonance studies of dipalmitoylphosphatidylcholine liposomes containing soybean-derived sterylglucoside. Chem Pharm Bull. 2000;48(5):610–613.
  • Maitani Y, Nakamura K, Kawano K. Application of sterylglucoside-containing particles for drug delivery. Curr Pharm Biotechnol. 2005;6(1):81–93.
  • Vidal S, Morere A, Montero JL. A convenient synthetic route to mannose 6‐phosphonate—cholesteryl conjugate. Heteroatom Chem. 2003;14(3):241–246.
  • Barragan V, Menger FM, Caran KL, et al. A mannose-6-phosphonate–cholesterylamine conjugate as a specific molecular adhesive linking cancer cells with vesicles. Chem Commun. 2001;1:85–86.
  • Cheng Y, Ho DM, Gottlieb CR, et al. Facial amphiphiles. J Am Chem Soc. 1992;114(18):7319–7320.
  • Venkatesan P, Cheng Y, Kahne D. Hydrogen bonding in micelle formation. J Am Chem Soc. 1994;116(15):6955–6956.
  • Bowe CL, Mokhtarzadeh L, Venkatesan P, et al. Design of compounds that increase the absorption of polar molecules. Proc Natl Acad Sci. 1997;94(22):12218–12223.
  • Sofia MJ, Kakarla R, Kogan N, et al. The efficient synthesis of a bis-glycosylated steroid drug transport reagent: methyl 3-β-amino-7α, 12α-di (1′ α-glucosyl)-5β-cholate (TC002). Bioorg Med Chem Lett. 1997;7(17):2251–2254.
  • Axelrod HR, Kim JS, Longley CB, et al. Intestinal transport of gentamicin with a novel, glycosteroid drug transport agent. Pharm Res. 1998;15(12):1876–1881.
  • Liu Z, inventor. Board of Supervisors of Louisiana State University and Agricultural and Mechanical College. Terpene glycosides and their combinations as solubilizing agents. United States Patent 8,551,507. 2013 Oct 8.
  • Kimata H, Sumida N, Matsufuji N, et al. Interaction of saponin of bupleuri radix with ginseng saponin: solubilization of saikosaponin-a with chikusetsusaponin V (= ginsenoside-Ro). Chem Pharm Bull. 1985;33(7):2849–2853.
  • Sasaki Y, Mizutani K, Kasai R, et al. Solubilizing properties of glycyrrhizin and its derivatives: solubilization of saikosaponin-a, the saponin of bupleuri radix. Chem Pharm Bull. 1988;36(9):3491–3495.
  • Tanaka T, Kataoka M, Tsuboi N, et al. New monoterpene glycoside esters and phenolic constituents of Paeoniae Radix, and increase of water solubility of proanthocyanidins in the presence of paeoniflorin. Chem Pharm Bull. 2000;48(2):201–207.
  • Tanaka T, Zhang H, Jiang ZH, et al. Relationship between hydrophobicity and structure of hydrolyzable tannins, and association of tannins with crude drug constituents in aqueous solution. Chem Pharm Bull. 1997;45(12):1891–1897.
  • Trombotto S, Bouchu A, Descotes G, et al. Hydrogen peroxide oxidation of palatinose and trehalulose: direct preparation of carboxymethyl α-D-glucopyranoside. Tetrahedron Lett. 2000;41(43):8273–8277.
  • Trombotto S, Danel M, Fitremann J, et al. Straightforward route for anchoring a glucosyl moiety onto nucleophilic species: reaction of amines and alcohols with carboxymethyl 3, 4, 6-tri-O-acetyl-α-D-glucopyranoside 2-O-lactone. J Org Chem. 2003;68(17):6672–6678.
  • Queneau Y, Chambert S, Moebs S, et al. Glycosidic bicyclic lactones as new carbohydrate scaffolds. In: Rauter AP, Lindhorst TKeditors. Carbohydrate chemistry – chemical and biological approaches. Cambridge: The Royal Society of Chemistry; 2009. p. 99–126.
  • Xavier NM, Rauter AP, Queneau Y. Carbohydrate-based lactones: synthesis and applications. In: Rauter AP, Queneau Y, Vogel P, editors. Carbohydrates in sustainable development II, a mine for functional molecules and materials. Berlin Heidelberg: Springer-Verlag; 2010. p. 19–62.
  • Le Chevalier A, Pierre R, Kanso R, et al. Preparation of new amide-linked pseudodisaccharides by the carboxymethylglycoside lactone (CMGL) strategy. Tetrahedron Lett. 2006;47(14):2431–2434.
  • Sol V, Charmot A, Krausz P, et al. Synthesis of new glucosylated porphyrins bearing an α‐D‐linkage. J Carbohydr Chem. 2006;25(4):345–360.
  • Ménard F, Sol V, Ringot C, et al. Synthesis of tetraglucosyl-and tetrapolyamine–tetrabenzoporphyrin conjugates for an application in PDT. Bioorg Med Chem. 2009;17(22):7647–7657.
  • Barsu C, Cheaib R, Chambert S, et al. Neutral push-pull chromophores for nonlinear optical imaging of cell membranes. Org Biomol Chem. 2010;8(1):142–150.
  • Chen J, Miao Y, Chambert S, et al. Carboxymethyl glycoside lactone (CMGL) synthons: scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers. Sci China Chem. 2010;53(9):1880–1887.
  • Abdelkader O, Moebs‐Sanchez S, Queneau Y, et al. Generation of well‐defined clickable glycopolymers from aqueous RAFT polymerization of isomaltulose‐derived acrylamides. J Polym Sci A. 2011;49(6):1309–1318.
  • Cheaib R, Listkowski A, Chambert S, et al. Synthesis of new mono-and disaccharidic carboxymethylglycoside lactones (CMGLs) and their use toward 1, 2-bisfunctionalized carbohydrate synthons. Tetrahedron Asymmetry. 2008;19(16):1919–1933.
  • Listkowski A, Otman O, Chambert S, et al. Synthesis and use of new C-glycosyl bicyclic lactones. Tetrahedron Lett. 2015;56(35):5051–5053.
  • Chambert S, Doutheau A, Queneau Y, et al. Synthesis and thermotropic behavior of simple new glucolipid amides. J Carbohydr Chem. 2007;26(1):27–39.
  • Ali-Rachedi F, Xavier NM, Chambert S, et al. Liquid crystalline mesopahses formed by disaccharidic glycosteroides. Forthcoming.
  • Jan HM, Chen YC, Shih YY, et al. Metabolic labelling of cholesteryl glucosides in Helicobacter pylori reveals how the uptake of human lipids enhances bacterial virulence. Chem Sci. 2016;7(9):6208–6216.
  • Lee SJ, Lee BI, Suh SW. Crystal structure of the catalytic domain of cholesterol‐α‐glucosyltransferase from Helicobacter pylori. Proteins Struct Funct Genet. 2011;79(7):2321–2326.
  • Hirai Y, Haque M, Yoshida T, et al. Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol. 1995;177(18):5327–5333.
  • Twibanire JAK, Omran RP, Grindley TB. Facile synthesis of a library of Lyme disease glycolipid antigens. Org Lett. 2012;14(15):3909–3911.
  • Stübs G, Rupp B, Schumann RR, et al. Chemoenzymatic synthesis of a glycolipid library and elucidation of the antigenic epitope for construction of a vaccine against Lyme disease. Chem Eur J. 2010;16(11):3536–3544.
  • Frasch W, Grunwald C. Acylated steryl glycoside synthesis in seedlings of Nicotiana tabacum L. Plant Physiol. 1976;58(6):744–748.
  • McMorris TC, White RH. Cholesterol beta-β-D-glucoside-6ʹ-O-palmitate, a metabolite of Pythium sylvaticum. Biochem Biophys Acta Enzym. 1977;482(2):308–312.
  • Paczkowski C, Musial A, Wlodkowski L, et al. Lipase-catalyzed regioselective synthesis of steryl (6′-O-acyl) glucosides. Biotechnol Lett. 2007;29(9):1403–1408.
  • Thombal RS, Jadhav VH. Sulfonated graphene oxide as highly efficient catalyst for glycosylation. J Carbohydr Chem. 2016;35(1):57–68.
  • Davis RA, Fettinger JC, Gervay-Hague J. Tandem glycosyl iodide glycosylation and regioselective enzymatic acylation affords 6-O-Tetradecanoyl-α-D-cholesterylglycosides. J Org Chem. 2014;79(17):8447–8452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.