318
Views
15
CrossRef citations to date
0
Altmetric
Articles

A multifunctional blue phase liquid crystal lens based on multi-electrode structure

, , , &
Pages 491-497 | Received 10 Apr 2017, Accepted 12 Jul 2017, Published online: 20 Jul 2017

References

  • Sato S. Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys. 1979;18:1679–1684.
  • Riza NA, Dejule MC. Three-terminal adaptive nematic liquid-crystal lens device. Opt Lett. 1994;19:1013–1015.
  • Nose T, Masuda S, Sato S, et al. Effects of low polymer content in a liquid-crystal microlens. Opt Lett. 1997;22:351–353.
  • Ye M, Sato S. Optical properties of liquid crystal lens of any size. Jpn J Appl Phys. 2002;41:L571–L573.
  • Wang B, Ye M, Honma M, et al. Liquid crystal lens with spherical electrode. Jpn J Appl Phys. 2002;41:1232–1233.
  • Riza NA, Khan SA. Programmable high-speed polarization multiplexed optical scanner. Opt Lett. 2003;28:561–563.
  • Ren H, Wu ST. Tunable electronic lens using a gradient polymer network liquid crystal. Appl Phys Lett. 2003;82:22–24.
  • Bezruchenko VS, Muravsky AA, Murauski AA, et al. Tunable liquid crystal lens based on pretilt angle gradient alignment. Mol Cryst Liq Cryst. 2016;626:222–228.
  • Hsu CJ, Chih SY, Jhang JJ, et al. Coaxially bifocal liquid crystal lens with switchable optical aperture. Liq Cryst. 2016;43:336–342.
  • He Z, Nose T, Sato S. Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes. Jpn J Appl Phys. 1997;36:1178–1184.
  • Lo KC, Wang JD, Lee CR, et al. Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer. Appl Phys Lett. 2007;91:181104.
  • Huang YP, Chen CW, Shen TC, et al. Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens. 3D Res. 2010;1:39–42.
  • Lin YH, Chen HS, Lin HC, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:113505.
  • Lin CH, Wang YY, Hsieh CW. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals. Opt Lett. 2011;36:502–504.
  • Che JH, Sheu CR. Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals. Opt Express. 2012;20:4738–4746.
  • Lee YJ, Baek JH, Kim Y, et al. Polarizer-free liquid crystal display with electrically switchable microlens array. Opt Express. 2013;21:129–134.
  • Chang YC, Jen TH, Ting CH, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Opt Express. 2014;22:2714–2724.
  • Yoshida H, Kobashi J. Flat optics with cholesteric and blue phase liquid crystals. Liq Cryst. 2016;43:1909–1919.
  • Lee CT, Li Y, Lin HY, et al. Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal. Opt Express. 2011;19:17402–17407.
  • Li Y, Wu ST. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt Express. 2011;19:8045–8050.
  • Li Y, Liu Y, Li Q, et al. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film. Appl Optics. 2012;51:2568–2572.
  • Lin SH, Huang LS, Lin CH, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals. Mol Cryst Liq Cryst. 2014;22:925–930.
  • Cui JP, Fan HX, Wang QH. A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure. Liq Cryst. 2017;44:643–647.
  • Xu D, Peng F, Wu ST. Polymer-stabilized blue phase liquid crystals. Opt Mater Express. 2011;1:1527–1535.
  • Liu JL, Ma HM, Sun YB. Blue-phase liquid crystal display with high dielectric material. Liq Cryst. 2016;43:1748–1752.
  • Chen H, Lan YF, Tsai CY, et al. Low-voltage blue-phase liquid crystal display with diamond-shape electrodes. Liq Cryst. 2017. 1264014. DOI:10.1080/02678292.2016.
  • Dou H, Ma HM, Sun YB. Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method. Chin Phys B. 2016;25:094221.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Haseba Y, Kikuchi H, Nagamura T, et al. Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range. Adv Mater. 2005;17:2311–2315.
  • Ge Z, Gauza S, Jiao M, et al. Electro-optics of polymer-stabilized blue phase liquid crystal displays. Appl Phys Lett. 2009;94:101104.
  • Li L, Bryant D, Bos PJ. Liquid crystal lens with concentric electrodes and inter-electrode resistors. Liq Cryst Rev. 2014;2:130–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.