141
Views
1
CrossRef citations to date
0
Altmetric
Article

Prediction of nematic transition temperatures of quinoline-containing liquid crystalline compounds from molecular structure

ORCID Icon, &
Pages 2337-2347 | Received 17 May 2017, Accepted 12 Jul 2017, Published online: 14 Aug 2017

References

  • Schadt M. Nematic liquid crystals and twisted-nematic LCDs. Liq Cryst. 2015;42:646–652.
  • Goodby JW, Mandle RJ, Davis EJ, et al. What makes a liquid crystal? The effect of free volume on soft matter. Liq Cryst. 2015;42:593–622.
  • Villanueva-García M, Gutiérrez-Parra RN, Martínez-Richa A, et al. Quantitative structure-property relationships to estimate nematic transition temperatures in thermotropic liquid crystals. J Mol Struct Theochem. 2005;727:63–69.
  • Ren YY, Liu HX, Yao XJ, et al. Prediction of nematic-isotropic transition temperatures in thermotropic liquid crystals by a heuristic method. Liq Cryst. 2007;34:1291–1297.
  • Fatemi MH, Ghorbanzad’e M. In silico prediction of nematic-isotropic transition temperature for liquid crystals using quantitative structure-property relationship approaches. Mol Divers. 2009;13:483–491.
  • Xu J, Wang L, Zhang H, et al. Accurate quantitative structure-property relationship analysis for prediction of nematic-isotropic transition temperatures in thermotropic liquid crystals. Mol Simulat. 2010;36:26–34.
  • Al-Fahemi JH. QSPR study on nematic-isotropic transition temperatures of thermotropic liquid crystals based on DFT-calculated descriptors. Liq Cryst. 2014;41:1575–1582.
  • Ren YY, Zhang YS, Yao XJ. QSPRs for estimating nematic transition temperatures of pyridine-containing liquid crystalline compounds. Liq Cryst. Forthcoming 2017.
  • Dragon (Software for Molecular Descriptor Calculation). Version 6.0. Milano (Italy): Talete srl; 2013. Available from: http://www.talete.mi.it/
  • Antanasijević J, Pocajt V, Antanasijević D, et al. Prediction of clearing temperatures of bent-core liquid crystals using decision trees and multivariate adaptive regression splines. Liq Cryst. 2016;43:1028–1037.
  • Wei XY, Hooper JB, Bedrov D. Influence of electrostatic interactions on the properties of cyanobiphenyl liquid crystals predicted from atomistic molecular dynamics simulations. Liq Cryst. 2017;44:332–347.
  • Sato K, Kitayama H, Shinjo K, et al. Liquid crystal composition, liquid crystal device using the composition, liquid crystal apparatus and display method. United States patent US 5,948,317,7. 1999 Sep.
  • Chia WL, Ye FJ, Chen EC. Synthesis and mesomorphic behaviour of the series of 2-(4-alkoxyphenyl)-6-methoxyquinolines and 2-(4-alkoxybiphenyl-4_-yl)-6-methoxyquinolines. Liq Cryst. 2013;40:989–997.
  • Chia WL, Kuo KN, Lin SH. Synthesis and thermotropic studies of two novel series of kinked liquid crystals: 2-(4ʹ-Alkoxybiphen-4-yl)-6-methylquinolines and 2-(6-Alkoxynaphthalen-2-yl)-6-methylquinolines. Int J Mol Sci. 2014;15:7579–7593.
  • Chia WL, Liao KH, Ho CY. Synthesis and mesomorphic properties on the series of 2-(4-alkylphenyl)-6-methylquinolines and 2-(4-alkoxyphenyl)-6-methylquinolines. Liq Cryst. 2009;36:557–563.
  • Chia WL, Liu CW. A new series of kinked liquid crystals: 2-(6-Alkoxynaphthalen-2-yl)-6-methoxyquinolines. Int J Mol Sci. 2015;16:7520–7534.
  • Zúñiga C, Belmar J, Parra M, et al. Synthesis and mesomorphic properties of 6-n-decyoxy-2-[4ʹ-N-alkoxyphenylimino] methyl]quinolines (IV). Liq Cryst. 1996;20:253–260.
  • Petrov VF. Nitrogen-containing fused heterocycles as the structural fragments in calamitic liquid crystals. Liq Cryst. 2001;28:217–240.
  • Katritzky AR, Lobanov VS, Karelson M. CODESSA (COmprehensive DEscriptors for structural and statistical analysis), version 2.0. Gainesville (FL): University of Florida; 1994.
  • HyperChem. Release 6.0 for Windows. Gainesville (FL): Hypercube, Inc; 2000. Available from: http://www.hyper.com
  • Katritzky AR, Perumal S, Petrukhin R, et al. Codessa-based theoretical QSPR model for hydantoin HPLC-RT lipophilicities. J Chem Inf Comput Sci. 2001;41:569–574.
  • Topliss JG, Costello RJ. Chance correlations in structure-activity studies using multiple regression analysis. J Med Chem. 1972;15:1066–1068.
  • Famini GR, Penski CA, Wilson LY. Using theoretical descriptors in quantitative structure activity relationship: some physicochemical properties. J Phy Org Chem. 1992;5:395–408.
  • Fox J, Weisberg S. An R companion to applied regression. 2nd ed. Thousand Oaks (CA): Sage; 2011. Available from: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
  • Kabacoff RI. R in action: data analysis and graphics with R. Shelter Island (NY): Manning; 2011.
  • The R Development Core Team. R 3.2.0 (The R foundation for Statistical Computing); 2013. Available from: http://cran.R-project.org
  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003;22:69–77.
  • Daszykowski M, Walczak B, Massart DL. Representative subset selection. Anal Chim Acta. 2002;468:91–103.
  • Ren YY, Zhao BW, Yao XJ. Use of advanced statistical learning methods and principal component analysis in quantitative structure-genotoxicity relationship study of amines. Collect Czech Chem C. 2009;76:217–241.
  • Ren YY, Zhou LC, Yang L, et al. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis. SAR QSAR Environ Res. 2016;27:721–746.
  • Katritzky AR, Kuanar M, Fara DC, et al. QSPR treatment of rat blood: air, saline: airand olive oil: airpartition coefficients using theoretical molecular descriptors. J Bioorgan Med Chem. 2004;12:4735–4748.
  • Katritzky AR, Oliferenko AA, Oliferenko PV, et al. A general treatment of solubility. 1. The QSPR correlation of solvation free energies of single solutes in series of solvents. J Chem Inf Comput Sci. 2003;43:1794–1805.
  • Lide DR. CRC handbook of chemistry and physics. 74th ed. Boca Raton (FL): CRC Press; 1993.
  • Sannigrahi AB. Ab-initio molecular-orbital calculations of bond index and valency. Adv Quantum Chem. 1992;23:301–351.
  • Johnson JW. Factors affecting relative weights: the influence of sampling and measurement error. Org Res Method. 2004;7:283–299.
  • Lebreton JM, Tonidandel S. Multivariate relative importance: extending relative weight analysis to multivariate criterion spaces. J Appl Psychol. 2008;93:329–345.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.