417
Views
13
CrossRef citations to date
0
Altmetric
Articles

Electro- and photoswitching of undulation structures in planar cholesteric layers aligned by a polyimide film possessing various values of the anchoring energy

Pages 536-552 | Received 10 May 2017, Accepted 22 Jul 2017, Published online: 14 Aug 2017

References

  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Chilaya GS, Lisetskii LN. Helical twist in cholesteric mesophases. Sov Phys Usp. 1981;24(6):496–510.
  • Zeldovich BY, Tabiryan NV. Equilibrium structure of a cholesteric with homeotropic orientation on the walls. JETP. 1982;56(3):563–566.
  • Kimura H, Hosino M, Nakano H. Temperature dependent pitch in cholesteric phase. J Phys Colloques. 1979;40:C3-174-C3-177.
  • Belyakov VA, Kats EI. Surface anchoring and temperature variations of the pitch in thin cholesteric layers. JETP. 2000;91(3):488–491.
  • Chilaya G, Hauck G, Koswig HD, et al. Field induced increase of pitch in planar cholesteric liquid crystals. Cryst Res Technol. 1997;32(3):401–405.
  • Belyakov A. Untwisting of the helical structure in a plane of chiral liquid crystals. JETP Lett. 2002;72(2):88–92.
  • Greubel W, Wolff U, Krüger H. Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures. Mol Cryst Liq Cryst. 1973;24(1–2):103–111.
  • Xiang J, Li Y, Paterson DA, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27(19):3014–3018.
  • Salili SM, Ribeiro De Almeida RR, Challa PK, et al. Spontaneously modulated chiral nematic structures of flexible bent-core liquid crystal dimers. Liq Cryst. 2017;44(1):160–167.
  • Kiselev AD, Sluckin TJ. Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects. Phys Rev E. 2005;71:031704–031715.
  • Ishikawa TLavrentovich OD. Defects and undulations in layered liquid crystals. In: Lavrentovich OD, Pasini P, Zannoni C, Žumer S, editors. Defects in liquid crystals: computer simulations, theory and experiment. The Netherlands: Kluwer Academic Publishers; 2001. p. 271–301
  • Denekamp C, Feringa BL. Optically active diarylethenes for multimode photoswitching between liquid crystalline phases. Adv Mater. 1998;10(14):1080–1082.
  • Bosco A, Jongejan MGM, Eelkema R, et al. Photoinduced reorganization of motor-doped chiral liquid crystals: bridging molecular isomerization and texture rotation. J Am Chem Soc. 2008;130:14615–14624.
  • Eelkema R, Feringa BL. Amplification of chirality in liquid crystals. Org Biomol Chem. 2006;4:3729–3745.
  • Wang Y, Urbas A, Li Q. Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. J Am Chem Soc. 2012;134:3342–3345.
  • Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater. 2012;24(15):1926–1945.
  • Terenetskaya I, Gvozdovsky I. Development of personal UV biodosimeter based on vitamin D photosynthesis. Mol Cryst Liq Cryst. 2001;368:551–558.
  • Aronishidze M, Chanishvili A, Chilaya G, et al. Color change effect based on provitamin D phototransformation in cholesteric liquid crystalline mixtures. Mol Cryst Liq Cryst. 2004;420:47–53.
  • Gvozdovskyy I, Yaroshchuk O, Serbina M. Light-induced nematic - cholesteric structural transitions in the LC cells with homeotropic anchoring. Mol Cryst Liq Cryst. 2011;546:202/[1672] - 208/[1678].
  • Ilchishin IP, Lisetskiy LM, Mykytiuk TV, et al. Reversible phototuningof lasing frequency in a due-doped cholesteric liquid crystal. Ukr J Phys. 2011;56(4):333–338.
  • Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18(4):127–128.
  • Crandall KA, Fisch MR, Petschek RG, et al. Vanishing Freedericksz transition threshold voltage in a chiral nematic liquid crystal. Appl Phys Lett. 1994;64:1741–1743.
  • Varanytsia A, Chien L-C. A spatial light modulator with two-dimentional array of liquid crystal bubbles. SID 14 Digest. 2014;45:1492–1495.
  • Meyer RB, Lonberg F, Chang -C-C. Cholesteric liquid crystal smart reflectors. Mol Cryst Liquid Cryst Sci Techn Sec A. 1996;288(1):47–61.
  • Drolet JJP, Chuang E, Barbastathis G, et al. Compact, integrated dynamic holographic memory with refreshed holograms. Opt Lett. 1997;22(8):552–554.
  • Lu MH. Bistable reflective cholesteric liquid crystal display. J Appl Phys. 1997;81(3):1063–1066.
  • Faklis D, Morris GM. Diffractive optics technology for display applications. In: Wu MH, editor. Light source, optics, and other critical components II. Projection displays. Proceedings SPIE 2407; 1995 Feb 5; San Jose (CA). DOI:10.1117/12.205913
  • Subacius D, Shiyanovskii SV, Bos P, et al. Cholesteric gratings with field-controlled period. Appl Phys Lett. 1997;71(23):3323–3325.
  • Senyuk B, Smalyukh I, Lavrentovich O. Elecrtically-controlled two-dimensional gratings based on layers undulationsin cholesteric liquid crystals. In: Khoo I-C, editor. Liquid Crystals IX. IR, microwave, and beam steering. Proceedings of SPIE 59360W; 2005 Aug 20; San Diego. California (USA). DOI:10.1117/12.615976
  • Senyuk BI, Smalyukh II, Lavrentovich OD. Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals. Opt Lett. 2005;30(4):349–351.
  • Lin C-H, Chiang R-H, Liu S-H, et al. Rotatable diffractive grating based on hybrid-aligned cholesteric liquid crystals. Opt Express. 2012;20(24):26837–26844.
  • Ryabchun A, Bobrovsky A, Stumpe J, et al. Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch. Adv Optical Mater. 2015;3(10):1462–1469.
  • Ryabchun A, Bobrovsky A, Stumpe J, et al. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv Optical Mater. 2015;3(9):1273–1279.
  • Gvozdovskyy I, Yaroshchuk O, Serbina M, et al. Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring. Opt Express. 2012;20(4):3499–3508.
  • Li W-S, Shen Y, Chen Z-J, et al. Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes. Appl Opt. 2017;56(3):601–606.
  • Hamdi R, Petriashvili G, De Santo MP, et al. Electrically controlled 1D and 2D cholesteric liquid crystal gratings. Mol Cryst Liq Cryst. 2012;553:97–102.
  • Fuh AY-G, Ch-H L, Huang C-Y. Dynamic pattern formation and beam-steering characteristics of cholesteric gratings. Jpn J Appl Phys. 2002;41(1):211–218.
  • Czajkovski M, Klajn J, Cybińska J, et al. Cholesteric gratings induced by electric field in mixtures of liquid crystal and novel chiral ionic liquid. Liq Cryst. 2017;44(5):911–923.
  • Klein WR, Cook BD. Unified approach to ultrasonic light diffraction. IEEE Trans Sonics Ultrason. 1967;14(3):123–134.
  • Moharam MG, Young L. Criterion for Bragg and Raman-Nath diffraction regimes. Appl Opt. 1978;17(11):1757–1759.
  • Gaylord TK, Moharam MG. Thin and thick gratings: terminology clarification. Appl Opt. 1981;20:3271–3273.
  • Helfrich W. Deformation of cholesteric liquid crystals with low threshold voltage. Appl Phys Lett. 1970;17:531–532.
  • Helfrich W. Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals. J Chem Phys. 1971;55:839–842.
  • Varanytsia A, Chien L-C. Photoswitchable and dye-doped bubble domain texture of cholesteric liquid crystals. Opt Lett. 2015;40(19):4392–4395.
  • Subacius D, Bos P, Lavrentovich OD. Switchable diffractive cholesteric gratings. Appl Phys Lett. 1997;71(10):1350–1352.
  • Gerritsma CJ, Van Zanten P. Periodic perturbulations in the cholesteric plane texture. Phys Lett. 1971;37A(1):47–48.
  • Senyuk BI, Smalyukh II, Lavrentovich OD. Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold. Phys Rev E. 2006;74:011712.
  • Kutulya LA, Kuz’min VE, Stel’makh IB, et al. Quantitative aspects of chirality. III. Description of the influence of the structure of chiral compounds on their twisting power in the nematic mesophase by means of the dissymmetry function. J Phys Org Chem. 1992;5:308–316.
  • Yarmolenko SN, Kutulya LA, Vaschenko VV, et al. Photosensitive chiral dopants with high twisting power. Liq Cryst. 1994;16(5):877–882.
  • Licristal brochure, Merck liquid crystals. Darmstadt: E. Merck; 1994
  • Rynes EP, Brown CV, Strömer JF. Method for the measurement of the K22 nematic elastic constant. App Phys Lett. 2003;82(1):13–15.
  • Yang F, Sambles JR, Bradberry GW. Half-leaky guided wave determination of azhimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal. J Appl Phys. 1999;85:728–733.
  • Grandjean F. Existence des plans differences équidistants normal a l’axe optique dans les liquides anisotropes [Existence of the optical axis planes equidistant normal differences in anisotropic fluids]. C R Hebd Seances Acad. 1921;172: 71–74. French.
  • Cano R. Interprétation des discontinuités de Grandjean [Interpretation of discontinuities Grandjean]. Bull Soc Fr Mineral Crystalogr. 1968;91: 20–27. French.
  • Smalyukh II, Lavrentovich OD. Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy. Phys Rev E. 2002;66:051703.
  • Andrienko D, Kurioz Y, Nishikawa M, et al. Control of the anchoring energy of rubbed polyimide layers by irradiation with depolarized UV light. Jpn J Appl Phys. 2000;39(Part 1, No. 3A):1217–1220.
  • Smalyukh II, Lavrentovich OD. Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals. Phys Rev Lett. 2003;90(8):085503.
  • Lavrentovich OD, Yang D-K. Cholesteric cellular patterns with electric-field-controlled line tension. Phys Rev E. 1998;57:R6269–R6272.
  • Gerus I, Glushchenko A, Kwon S-B, et al. Anchoring of a liquid crystal on photoaligning layer with varying surface morphology. Liq Cryst. 2001;28:1709–1713.
  • Andrienko D, Dyadyusha A, Iljin A, et al. Measurement of azimuthal anchoring energy of nematic liquid crystal on photoaligning polymer surface. Mol Cryst Liq Cryst. 1998;321:271–281.
  • Gvozdovskyy I, Jampani VSR, Škarabot M, et al. Light-induced rewiring and winding of Saturn ring defects in photosensitive chiral nematic colloids. Eur Phys J E. 2013;36(9):13097–13098.
  • Gvozdovskyy I. Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field. Liq Cryst. 2015;41(10):1495–1504.
  • McKay G. Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal. Eur Phys J E. 2012;35(8):74.
  • Jepsen ML, Gerritsen HJ. Liquid-crystal-filled gratings with diffraction efficiency. Opt Lett. 1996;21(14):1081–1083.
  • Varanytsia A, Chein L-C. Bistable and photo switchable liquid crystal diffractive grating. Poster session presented at: 25th International Liquid Crystal Conference; 2014 Jun 29-Jul 4; Dublin, Ireland.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.