728
Views
27
CrossRef citations to date
0
Altmetric
Invited Article

Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures

, , , , , , , , , & show all
Pages 1929-1947 | Received 01 Jun 2017, Published online: 02 Aug 2017

References

  • Qi H, Hegmann T. Liquid crystal–gold nanoparticle composites. Liq Cryst Today. 2011;20(4):102–114.
  • Khoo IC. Nonlinear Optics, active plasmonics and metamaterials with liquid crystals. Prog Quantum Electron. 2014;38:77–117.
  • Kitzerow HS. Photonic micro- and nanostructures, metamaterials. Chapter 13. In: Goodby JW, Collings P, Gleeson H, et al., editors. Handbook of liquid crystals. Vol. 8. Weinheim: Wiley-VCH; 2014. p. 373–426.
  • Mitov M, Bourgerette C, de Guerville F. Fingerprint patterning of solid nanoparticles embedded in a cholesteric liquid crystal. J Phys: Cond Matter. 2004;16(19):S1981–S1988.
  • Cseh L, Mehl GH. The design and investigation of room temperature thermotropic nematic gold nanoparticles. J Am Chem Soc. 2006;128(41):13376–13377.
  • Wojcik M, Lewandowski W, Matraszek J, et al. Liquid-crystalline phases made of gold nanoparticles. Angew Chemie Int Ed. 2009;48(28):5167–5169.
  • Zeng X, Liu F, Fowler AG, et al. 3D ordered gold strings by coating nanoparticles with mesogens. Adv Mater. 2009;21:1746–1750.
  • Draper M, Saez IM, Cowling SJ, et al. Self-assembly and shape morphology of liquid-crystalline gold metamaterials. Adv Funct Mater. 2011;21(7):1260–1278.
  • Milette J, Cowling S, Toader V, et al. Reversible long range network formation in gold nanoparticle - nematic liquid crystal composites. Soft Matter. 2012;8(1):173–179.
  • Buchnev O, Ou JY, Kaczmarek M, et al. Electro-optical control in a plasmonic metamaterial hybridized with a liquid-crystal cell. Opt Express. 2013;21(2):1633–1638.
  • Yoshida H, Tanaka Y, Kawamoto K, et al. Nanoparticle-stabilized cholesteric blue phases. Appl Phys Express. 2009;2(12):121501.
  • Urbanski M, Mirzaei J, Hegmann T, et al. Nanoparticle doping in nematic liquid crystals: distinction between surface and bulk effects by numerical simulations. ChemPhysChem. 2014;15(7):1395–1404.
  • Maier SA. Plasmonics – fundamentals and applications. New York: Springer; 2007.
  • Cai W, Shalaev V. Optical metamaterials – fundamentals and applications. New York: Springer; 2010.
  • Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):1232009.
  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–150.
  • Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10(4):308–312.
  • Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85:3966–3969.
  • Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature Commun. 2012;3:1205.
  • Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths. Science. 2010;328(5976):337–339.
  • Pawlik G, Tarnowski K, Walasik W, et al. Infrared cylindrical cloak in nanosphere dispersed liquid crystal metamaterial. Opt Lett. 2012;37(11):1847–1849.
  • Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater. 2012;11:917–924.
  • Leusch V, Armbruster B, Pernicka E, et al. On the invention of gold metallurgy: the gold objects from the Varna I cemetery (Bulgaria)—technological consequence and inventive creativity. Cambridge Archaeol J. 2015;25(1):353–376.
  • Gimbutas M. Gold treasure at Varna. Archaeology. 1977;30(1):44–51.
  • Bianchi RS. Reflections of the sky’s eyes. Notes Hist Arts. 1985;4(2/3):10–18.
  • Yin L, Vlasko-Vlasov V, Pearson J, et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 2005;5(7):1399–1402.
  • Drude P. Zur Elektronentheorie der Metalle. Annalen Der Physik. 1900;306(3):566–613.
  • Lorentz HA. Le movement des électrons dans les métaux. Archives Néerlandaises Des Sciences Exactes Et Naturelles. 1905;10:336–371.
  • Herzfeld KF. Zur Elektronentheorie der Metalle. Annalen Der Physik. 1913;346:27–51.
  • Lončarić M, Sancho-Parramon J, Zorc H. Optical properties of gold island films - a spectroscopic ellipsometry study. Thin Solid Films. 2011;519(9):2946–2950.
  • Veselago VG. Negative refraction as a source of some pedagogical problems. Acta Physica Polonica A. 2007;112(5):777–781.
  • Derkachova A, Kolwas K, Demchenko I. Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics. 2016;11:941–951.
  • Vial A, Grimault AS, Macías D, et al. Improved analytical fit gold dispersion: Application modeling extinction spectra with finite-difference time-domain method. Phys Rev B. 2005;71:085416.
  • Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–830.
  • Grady NK, Halas NJ, Nordlander P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem Phys Lett. 2004;399:167–171.
  • Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109:21556–21565.
  • Bozhevolnyi S, Volkov V, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006;440:508–511.
  • Chen Z, Holmgaard T, Bozhevolnyi SI, et al. Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt Lett. 2009;34:310.
  • Barber DJ, Freestone IC. An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry. 1990;32(1):33–45.
  • Colomban P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J Nano Res. 2009;8:109–132.
  • Unser S, Bruzas I, He J, et al. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors. 2015;15(7):15684–15716.
  • Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen Der Physik. 1908;25:377–445.
  • Muni Raj M, Toutam V. Size-independent parameter for temperature-dependent surface plasmon resonance in metal nanoparticles. J Phys Chem C. 2016;120:19316−19321.
  • Hutter E, Pileni MP. Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B. 2003;107(27):6497–6499.
  • Essone Mezeme M, Lasquellec S, Brosseau C. Dielectric resonances at optical frequencies using metal nanoshells. J Phys D: Appl Phys. 2009;42:135420.
  • Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem. 2015;407(14):3883–3897.
  • Kick A, Bönsch M, Mertig M, et al. Rapid detection of DNA hybridization on surface plasmon resonance based microarrays. Sensors IEEE. 2010;2010:1636–1639.
  • Jiménez-Monroy KL, Kick A, Eersels K, et al. Surface plasmon resonance-based DNA microarrays: comparison of thiol and phosphorothioate modified oligonucleotides. Phys Status Solidi A. 2013;210(5):918–925.
  • Mackay TG, Lakhtakia A. Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing. IEEE Sens J. 2012;12(2):273–280.
  • Nguyen H, Sidiroglou F, Collins SF, et al. A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures. Appl Phys Lett. 2013;103:193116.
  • Caucheteur C, Guo T, Liu F, et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nature Commun. 2016;7:13371.
  • Klantsataya E, Jia P, Ebendorff-Heidepriem H, et al. Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors. 2016;17:12.
  • Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–297.
  • Unser S, Campbell I, Jana D, et al. Direct glucose sensing in the physiological range through plasmonic nanoparticle formation. Analyst. 2015;140:590–599.
  • Yang KH. On the determination of liquid crystal-to-wall anchoring anisotropy by the surface-plasmon polariton technique. J Appl Phys. 1982;53(10):6742–6745.
  • Welford KR, Sambles JR, Clark MG. Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection. Liq Cryst. 1987;2(1):91–105.
  • Koenig GM Jr, Gettelfinger BT, de Pablo JJ, et al. Using localized surface plasmon resonances to probe the nanoscopic origins of adsorbate-driven ordering transitions of liquid crystals in contact with chemically functionalized gold nanodots. Nano Lett. 2008;8(8):2362–2368.
  • Kumar A, Prakash J, Mehta DS, et al. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. Appl Phys Lett. 2009;95:023117.
  • Wang H, Vial A. Plasmonic resonance tunability and surface-enhanced raman scattering gain of metallic nanoparticles embedded in a liquid crystal cell. J Phys Chem C. 2013;117:24537−24542.
  • Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater. 2010;9:387–396.
  • Shelby RA, Smith DR, Nemat-Nasser SC, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl Phys Lett. 2001;78(4):489–491.
  • Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science. 2004;306:1351–1353.
  • Wiltshire MCK, Hajnal JV, Pendry JB, et al. Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires. Opt Express. 2003;11:709–715.
  • Dolling G, Enkrich C, Wegener M, et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science. 2006;312:892–894.
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech. 1999;47:2075–2084.
  • Rockstuhl C, Zentgraf T, Guo H, et al. Resonances of split-ring resonator metamaterials in the near infrared. Appl Phys B. 2006;84:219–227.
  • Veselago VG. Electrodynamics of substances with simultaneously negative values of ε and µ. Sov Phys Uspekhi-USSR. 1968;10(4):509–514.
  • Veselago VG. Electrodynamics of materials with negative index of refraction”, Uspekhi Fizicheskikh Nauk and Russian Academy of Sciences. Physics-Uspekhi. 2003;46(7):764–768.
  • Leonhardt U. Optical conformal mapping. Science. 2006;312(5781):1777–1780.
  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312(5781):1780–1782.
  • Goodby JW, Saez IM, Cowling SJ, et al. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47(15):2754–2787.
  • Goodby JW, Bates M, Saez IM, et al. Liquid crystal nano-particles, LCNANOP - A SONS II Collaborative Research Project. In: Bauer S, Cheng Z, Wrobleski DA, editors. Polymer-based smart materials – processes, properties and application. Book Series: Materials Research Society Symposium Proceedings Volume 1134; 2008 Dec 2-5; Boston, MA. New York (NY): Cambridge University Press; 2009. p. 261-273.
  • Buluy O, Burseva D, Hakobyan MR, et al. Influence of surface treatment of ferromagnetic nanoparticles on properties of thermotropic nematic liquid crystals. Mol Cryst Liq Cryst. 2012;560:149–158.
  • Milette J, Relaix S, Lavigne C, et al. Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter. 2012;8(24):6593.
  • Prodanov MF, Kolosov MA, Krivoshey AI, et al. Dispersion of magnetic nanoparticles in a polymorphic liquid crystal. Liq Cryst. 2012;39(12):1512–1526.
  • Prodanov MF, Pogorelova NV, Kryshtal AP, et al. thermodynamically stable dispersions of quantum dots in a nematic liquid crystal. Langmuir. 2013;29(30):9301–9309.
  • Goodby JW, Mandle RJ, Davis EJ, et al. What makes a liquid crystal? The effect of free volume on soft matter. Liq Cryst. 2015;42(5–6):593–622.
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft selfassembly. Chem Soc Rev. 2011;40(1):306–319.
  • Dintinger J, Tang B-J, Zeng X, et al. A self-organized anisotropic liquid-crystal plasmonic metamaterial. Adv Mater. 2013;25(14):1999–2004.
  • Sharma V, Park K, Srinivasarao M. Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater Sci Eng. 2009;R65:1–38.
  • Umadevi S, Feng X, Hegmann T. Large area self-assembly of nematic liquid crystal-functionalized gold nanorods. Adv Funct Mater. 2013;23:1393–1403.
  • Qi H, Kinkead B, Marx VM, et al. Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts. ChemPhysChem. 2009;10(8):1211–1218.
  • Saliba S, Mingotaud C, Kahn ML, et al. Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale. 2013;5(15):6641–6661.
  • Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. 1994;7:801–802.
  • Brust M, Kiely CJ. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A. 2002;202:175–186.
  • Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B. 1999;103(40):8410–8426.
  • Talapin DV, Lee J-S, Kovalenko MV, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010;110(1):389–458.
  • Draper M. Golden liquid crystal nanoparticles [dissertation]. York (GB): University of York; 2009.
  • Mirzaei J, Urbanski M, Kitzerow H-S, et al. Synthesis of liquid crystal silanefunctionalized gold nanoparticles and their effects on the optical and electro-optic properties of a structurally related nematic liquid crystal. ChemPhysChem. 2014;15(7):1381–1394.
  • Urbanski M. On the impact of nanoparticle doping on the electro-optic response of nematic hosts. Liq Cryst Today. 2015;24(4):102–115.
  • Mori T, Hegmann T. A practical guide to calculate the number of atoms and overall composition of metal nanoparticles using geometric considerations. J Nanopart Res. 2016;18:295.
  • Baginski M, Szmurlo A, Andruszkiewicz A, et al. Dynamic self-assembly of nanoparticles using thermotropic liquid crystals. Liq Cryst. 2016;43(13–15):2391–2409.
  • Feng X, Sosa-Vargas L, Umadevi S, et al. Discotic liquid crystal functionalized gold nanorods: 2- and 3D self-assembly plus macroscopic alignment and increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π-π interactions. Adv Funct Mater. 2015;25:1180–1192.
  • Kanayama N, Tsutsumi O, Kanazawa A, et al. Distinct thermodynamic behavior of a mesomorphic gold nanoparticle covered with a liquid-crystalline compound. Chem Commun. 2001;(24):2640–2641.
  • Cseh L, Mehl GH. Structure–property relationships in nematic gold nanoparticles. J Mater Chem. 2007;17(4):311–315.
  • Mang X, Zeng X, Tang B, et al. Control of anisotropic self-assembly of gold nanoparticles coated with mesogens. J Mater Chem. 2012;22(22):11101.
  • Lewandowski W, Wójcik M, Górecka E. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties. ChemPhysChem. 2014;15(7):1283–1295.
  • Lewandowski W, Fruhnert M, Mieczkowski J, et al. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Commun. 2015;6:6590.
  • Kanie K, Matsubara M, Zeng X, et al. Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona. J Am Chem Soc. 2012;134(2):808–811.
  • Pratibha R, Park K, Smalyukh II, et al. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt Express. 2009;17(22):19459–19469.
  • Wojcik M, Kolpaczynska M, Pociecha D, et al. Multidimensional structures made by gold nanoparticles with shape-adaptive grafting layers. Soft Mat. 2010;6(21):5397.
  • Müller J, Sönnichsen C, von Poschinger H, et al. Electrically controlled light scattering with single metal nanoparticles. Appl Phys Lett. 2002;81(1):171–173.
  • Koenig GM, Meli M-V, Park J-S, et al. Coupling of the plasmon resonances of chemically functionalized gold nanoparticles to local order in thermotropic liquid crystals. Chem Mater. 2007;19(5):1053–1061.
  • Mitov M, Portet C, Bourgerette C, et al. Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal. Nat Mater. 2002;1(4):229–231.
  • Bitar R, Agez G, Mitov M. Cholesteric liquid crystal self-organization of gold nanoparticles. Soft Matter. 2011;7(18):8198.
  • Ayeb H, Grand J, Sellame H, et al. Gold nanoparticles in a cholesteric liquid crystal matrix: self-organization and localized surface plasmon properties. J Mater Chem. 2012;22:7856–7862.
  • Pendery JS, Merchiers O, Coursault D, et al. Gold nanoparticle self-assembly moderated by a cholesteric liquid crystal. Soft Matter. 2013;9:9366–9375.
  • Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater. 2012;24(11):1461–1465.
  • Qi H, Hegmann T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. Am Chem Soc Appl Mater Interfaces. 2009;1(8):1731–1738.
  • Urbanski M, Kinkead B, Hegmann T, et al. Director field of birefringent stripes in liquid crystal/nanoparticle dispersions. Liq Cryst. 2010;37(9):1151–1156.
  • Kinkead B, Hegmann T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J Mater Chem. 2010;20(3):448–458.
  • Mirzaei J, Urbanski M, Yu K, et al. Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots. J Mater Chem. 2011;21(34):12710.
  • Da Cruz C, Sandre O, Cabuil V. Phase behavior of nanoparticles in a thermotropic liquid crystal. J Phys Chem B. 2005;109(30):14292–14299.
  • Bezrodna T, Chashechnikova I, Gavrilko T, et al. Structure formation and its influence on thermodynamic and optical properties of montmorillonite organoclay–5cb liquid crystal nanocomposites. Liq Cryst. 2008;35(3):265–274.
  • Gardner DF, Evans JS, Smalyukh II. Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals. Mol Cryst Liq Cryst. 2011;545(1):1227–1245.
  • Qi H, Hegmann T. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J Mater Chem. 2006;16(43):4197.
  • Qi H, Kinkead B, Hegmann T. Unprecedented dual alignment mode and freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv Funct Mater. 2008;18(2):212–221.
  • Reznikov M, Sharma A, Hegmann T. Ink-jet printed nanoparticle alignment layers: easy design and fabrication of patterned alignment layers for nematic liquid crystals. Part Part Syst Charact. 2014;31(2):257–265.
  • Quint MT, Delgado S, Paredes JH, et al. All-optical switching of nematic liquid crystal films driven by localized surface plasmons. Opt Express. 2015;23(5):6888–6895.
  • Watson JD, Crick FH. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–738.
  • Seeman NC. DNA in a material world. Nature. 2003;421:427–431.
  • Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302.
  • Ke Y, Douglas SM, Liu M, et al. Multilayer DNA origami packed on a square lattice. J Am Chem Soc. 2009;131:15903–15908.
  • Douglas SM, Dietz H, Liedl T, et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009;459:414–418.
  • Dietz H, Douglas SM, Shih WM. Folding DNA into twisted and curved nanoscale shapes. Science. 2009;325:725–730.
  • Liedl T, Högberg B, Tytell J, et al. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol. 2010;5(7):520–524.
  • Han DR, Pal S, Nangreave J, et al. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332:342–346.
  • Wang ZG, Song C, Ding B. Functional DNA nanostructures for photonic and biomedical applications. Small. 2013;9(13):2210–2222.
  • Puchkova A, Vietz C, Pibiri E, et al. DNA Origami Nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 μM. Nano Lett. 2015;15(12):8354–8359.
  • Holliday R. A mechanism for gene conversion in fungi. Genet Res Camb. 1964;5:282–304.
  • Liu Y, West SC. Timeline: happy holidays: 40th anniversary of the holiday junction. Nat Rev Mol Cell Biol. 2004;5:937–944.
  • Seeman NC. Nucleic acid junctions and lattices. J Theor Biol. 1982;99:237–247.
  • Douglas SM, Marblestone AH, Teerapittayanon S, et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009;37(15):5001–5006.
  • Acuna GP, Moller FM, Holzmeister P, et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science. 2012;338:506–510.
  • Grimault AS, Vial A, Grand F, et al. Modelling of the near-field of metallic nanoparticle gratings: localized surface plasmon resonance and SERS applications. J Microsc. 2008;229(3):428–432.
  • Kühler P, Roller EM, Schreiber R, et al. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman Spectroscopy. Nano Lett. 2014;14(5):2914–2919.
  • Martens K, Funck T, Kempter S, et al. Alignment and graphene-assisted decoration of lyotropic chromonic liquid crystals containing DNA origami nanostructures. Small. 2016;12(12):1658–1666.
  • Schreiber R, Luong N, Fan Z, et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat Commun. 2013;4:2948.
  • Shen X, Song C, Wang J, et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc. 2012;134:146–149.
  • Kuzyk A, Schreiber R, Zhang H, et al. Reconfigurable 3D plasmonic metamolecules. Nat Mater. 2014;13:862–866.
  • Douglas SM, Chou JJ, Shih WM. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA. 2007;104:6644–6648.
  • Bellot G, McClintock MA, Chou JJ, et al. DNA nanotubes for NMR structure determination of membrane proteins. Nat Protoc. 2013;8(4):755–770.
  • Zhang B, Kitzerow HS. Influence of proton and salt concentration on the chromonic liquid crystal phase diagram of disodium cromoglycate solutions: prospects and limitations of a host for DNA nanostructures. J Phys Chem B. 2016;120:3250–3256.
  • Leforestier A, Livolant F. Supramolecular ordering of DNA in the cholesteric liquid crystalline phase: an ultrastructural study. Biophys J. 1993;65:56–72.
  • Nakata M, Zanchetta G, Chapman BD, et al. End-to-end stacking and liquid crystal condensation of 6-to 20-base pair DNA duplexed. Science. 2007;318:1276–1279.
  • Salamonczyk M, Zhang J, Portale G, et al. Smectic phase in suspensions of gapped DNA duplexes. Nature Commun. 2016;7:13358.
  • Winfree E, Liu FR, Wenzler LA, et al. Design and self-assembly of two-dimensional DNA crystals. Nature. 1998;394(6693):539–544.
  • Zheng J, Birktoft JJ, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature. 2009;461(7260):74–77.
  • Seeman NC. Nanomaterials based on DNA. Annu Rev Biochem. 2010;79:65–87.
  • Nickel B, Liedl T. DNA-linked superlattices get into shape. Nat Mater. 2015;14:746–749.
  • Xiao SJ, Liu FR, Rosen AE, et al. Selfassembly of metallic nanoparticle arrays by DNA scaffolding. J. Nanoparticle Res. 2002;4(4):313–317.
  • Le JD, Pinto Y, Seeman NC, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 2004;4(12):2343–2347.
  • Zheng J, Constantinou PE, Micheel C, et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 2006;6(7):1502–1504.
  • Zhang T, Hartl C, Fischer S, et al. 3D DNA origami crystals. 2017. p. 21. available at: https://arxiv.org/abs/1706.06965.
  • Dridi M, Vial A. FDTD modeling of gold nanoparticles in a nematic liquid crystal: quantitative and qualitative analysis of the spectral tunability. J Phys Chem C. 2010;114:9541–9545.
  • Wang L. Self-activating liquid crystal devices for smart laser protection. Liq Cryst. 2016;43(13–15):2062–2078.
  • Tasolamprou AC, Zografopoulos DC, Kriezis EE. Liquid crystal-based dielectric loaded surface plasmon polariton optical switches. J Appl Phys. 2011;110:093102.
  • Werner DH, Kwon DH, Khoo IC, et al. Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. Opt Express. 2007;15(6):3342–3347.
  • Liu YJ, Hao Q, Smalley JST, et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. ApplPhys Lett. 2010;97:091101.
  • Hao Q, Zhao Y, Juluri BK, et al. Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals. J Appl Phys. 2011;109:084340.
  • Zhang F, Kang L, Zhao Q, et al. Magnetically tunable left handed metamaterials by liquid crystal orientation. Opt Express. 2009;17(6):4360–4366.
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–4187.
  • Zhao Q, Kang L, Du B, et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett. 2007;90:011112.
  • Zhang F, Zhao Q, Zhang W, et al. Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. Appl Phys Lett. 2010;97:134103.
  • Buchnev O, Wallauer J, Walther M, et al. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl Phys Lett. 2013;103:141904.
  • Atorf B, Mühlenbernd H, Muldarisnur M, et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal. Opt Lett. 2014;39(5):1129–1132.
  • Decker M, Kremers C, Minovich A, et al. Electro-optical switching by liquid-crystal controlled metasurfaces. Opt Express. 2013;21(7):8879–8885.
  • Atorf B, Mühlenbernd H, Muldarisnur M, et al. Effect of alignment on a liquid crystal/split-ring resonator metasurface. ChemPhysChem. 2014;15(7):1470–1476.
  • Kang B, Woo JH, Choi E, et al. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure. Opt Express. 2010;18(16):16492–16498.
  • Atorf B, Kitzerow HS. Methyl red doped liquid crystals and their combination with metamaterials. Lecture O29, held at the 2nd Joint British German Liquid Crystal Conference; 2017 Apr 3–5; Würzburg, Germany.
  • Atorf B, Mühlenbernd H, Muldarisnur M, et al. Tuning of the resonance modes of a metasurface with a liquid crystal. Poster P1.032, presented at the 25th International Liquid Crystal Conference; Dublin, Ireland; 2014 Jun 30 – Jul 4.
  • Lucchetti L, Di Fabrizio M, Francescangeli O, et al. Colossal optical nonlinearity in dye doped liquid crystals. Opt Commun. 2004;233(4):417–424.
  • Ouskova E, Reznikov Y, Shiyanovskii SV, et al. Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface. Phys Rev E. 2001;64:051709.
  • Lucchetti L, Lucchetta DE, Francescangeli O, et al. SINE: surface induced nonlinear effects. Mol Cryst Liq Cryst. 2002;375:641–650.
  • Pawlik G, Tarnowski K, Walasik W, et al. Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection. Opt Lett. 2014;39(7):1744–1747.
  • Reshetnyak VY, Pinkevych IP, Sluckin TJ, et al. Effective medium theory for anisotropic media with plasmonic core-shell nanoparticle inclusions. 2017.
  • Roller EM, Khorashad LK, Fedoruk M, et al. DNA-assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies. Nano Lett. 2015;15:1368–1373.
  • Guler U, Shalaev VM, Boltasseva A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today. 2015;18(4):227–237.
  • Al Mohtar A, Kazan M, Taliercio T, et al. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial. Nanotechnology. 2017;28:125701.
  • Gonçalves PAD, Peres NMR. An introduction to graphene plasmonics. Singapore: World Scientific; 2016.
  • Basu R, Kinnamon D, Garvey A. Graphene and liquid crystal mediated interactions. Liq Cryst. 2016;43(13–15):2375–2390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.