311
Views
9
CrossRef citations to date
0
Altmetric
Articles

New chiral liquid crystal cyclic monomers based on diosgenin: synthesis and mesomorphism

, , , ORCID Icon, &
Pages 886-895 | Received 20 Jul 2017, Accepted 23 Oct 2017, Published online: 10 Nov 2017

References

  • Dierking I. Chiral liquid crystals: structures, phases, effects. Symmetry. 2014;6:444–472.
  • Sharma V, Crne M, Park JO, et al. Structural origin of circularly polarized iridescence in jeweled beetles. Science. 2009;325:449–451.
  • Vignolini S, Rudall PJ, Rowland AV, et al. Pointillist structural color in Pollia fruit. P Natl Acad Sci USA. 2012;109:15712–15715.
  • Sato K, Fujita S, Iemitsu M. Acute administration of diosgenin or dioscorea improves hyperglycemia with increases muscular steroidogenesis in STZ-induced type 1 diabetic rats. J Steroid Biochem. 2014;143:152–159.
  • Iglesias-Arteaga MA, Sandoval-Ramı́rez J, Mata-Esma MY, et al. Abnormal Beckmann rearrangement in 23-hydroxyiminodiosgenin acetate. Tetrahedron Lett. 2004;45:4921–4926.
  • Man S, Gao W, Zhang Y, et al. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia. 2010;81:703–714.
  • Ribeiro MH. Naringinases: occurrence, characteristics, and applications. Appl Microbiol Biot. 2011;90:1883–1895.
  • Wang YJ, Pan KL, Hsieh TC, et al. Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus. J Nat Prod. 2011;74:580–584.
  • Ku CM, Lin JY. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem. 2013;141:1104–1113.
  • Gong G, Qin Y, Huang W. Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis CH Wright in vitro and in vivo. Phytomedicine. 2011;18:458–463.
  • Jan TR, Wey SP, Kuan CC, et al. Diosgenin, a steroidal sapogenin, enhances antigen-specific IgG2a and interferon-γ expression in ovalbumin-sensitized BALB/c mice. Planta Med. 2007;53:421–426.
  • Yang JS, Wu CC, Kuo CL, et al. Solanum lyratum extracts induce extrinsic and intrinsic pathways of apoptosis in WEHI-3 murine leukemia cells and inhibit allograft tumor. Evid-Based Compl Alt. 2012;2012:254960.
  • Liu XF, Zhang XN, Song ZW, et al. Study on new chiral liquid crystalline monomers and polymers containing menthyl groups. Liq Cryst. 2014;41:986–999.
  • Watanabe J, Kamee H, Fujiki M. First observation of thermotropic cholesteric liquid crystal in helical polysilane. Polym J. 2001;33:495–497.
  • Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378:467–469.
  • Shibaev PV, Kopp VI, Genack AZ. Photonic materials based on mixtures of cholesteric liquid crystals with polymers. J Phys Chem B. 2003;107:6961–6964.
  • Brettar J, Bürgi T, Donnio B, et al. Ferrocene-containing optically active liquid-crystalline side-chain polysiloxanes with planar chirality. Adv Funct Mater. 2006;16:260–267.
  • Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater. 2012;24:1926–1945.
  • Uchida Y, Takanishi Y, Yamamoto J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells. Adv Mater. 2013;25:3234–3237.
  • Bruckner JR, Porada JH, Dietrich CF, et al. A lyotropic chiral smectic C liquid crystal with polar electrooptic switching. Angew Chem Int Ed. 2013;52:8934–8937.
  • Gupta VK, Sharma RK, Mathews M, et al. Crystal structure of bis (cholesteryl) 4, 4′-(1, 2-phenylenebis (oxy))-dibutanoate: an oligomesogen. Liq Cryst. 2009;36:339–343.
  • Ercole F, Whittaker MR, Quinn JF, et al. Cholesterol modified self-assemblies and their application to nanomedicine. Biomacromolecules. 2015;16:1886–1914.
  • Setia S, Sidiq S, De J, et al. Applications of liquid crystals in biosensing and organic light-emitting devices: future aspects. Liq Cryst. 2016;43:2009–2050.
  • Fukushi Y, Yoshino H, Ishikawa J, et al. Effects of liquid crystallinity on anticancer activity of benzoate derivatives possessing a terminal hydroxyl group. Liq Cryst. 2014;41:1873–1878.
  • Ailincai D, Farcau C, Paslaru E, et al. PDLC composites based on polyvinyl boric acid matrix-a promising pathway towards biomedical engineering. Liq Cryst. 2016;43:1973–1985.
  • Mosapour KZ, Behjatmanesh-Ardakani R, Hashim R. The interaction between sugar-based surfactant with zigzag single-walled carbon nanotubes: insight from a computational study. Liq Cryst. 2015;42:158–166.
  • Rokicki G. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog Polym Sci. 2000;25:259–342.
  • Nagahama K, Ueda Y, Ouchi T, et al. Exhibition of soft and tenacious characteristics based on liquid crystal formation by introduction of cholesterol groups on biodegradable lactide copolymer. Biomacromolecules. 2007;8:3938–3943.
  • Suriano F, Coulembier O, Hedrick JL, et al. Functionalized cyclic carbonates: from synthesis and metal-free catalyzed ring-opening polymerization to applications. Polym Chem. 2011;2:528–533.
  • Lee ALZ, Venkataraman S, Sirat SBM, et al. The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Biomaterials. 2012;33:1921–1928.
  • Surnar B, Jayakannan M. Stimuli-responsive poly (caprolactone) vesicles for dual drug delivery under the gastrointestinal tract. Biomacromolecules. 2013;14:4377–4387.
  • Paun IA, Zamfirescu M, Mihailescu M, et al. Laser micro-patterning of biodegradable polymer blends for tissue engineering. J Mater Sci. 2015;50:923–936.
  • Klok HA, Hwang JJ, Iyer SN, et al. Cholesteryl-(L-lactic acid) n building blocks for self-assembling biomaterials. Macromolecules. 2002;35:746–759.
  • Yang J, Li Q, Li Y, et al. Chemical preparation and characterization of new biodegradable aliphatic polyesters end-capped with diverse steroidal moieties. J Polym Sci Part A: Polym Chem. 2006;44:2045–2058.
  • Wan T, Zou T, Cheng SX, et al. Synthesis and characterization of biodegradable cholesteryl end-capped polycarbonates. Biomacromolecules. 2005;6:524–529.
  • Venkataraman S, Lee AL, Maune HT, et al. Formation of disk-and stacked-disk-like self-assembled morphologies from cholesterol-functionalized amphiphilic polycarbonate diblock copolymers. Macromolecules. 2013;46:4839–4846.
  • Cho S, Heo GS, Khan S, et al. Functionalizable hydrophilic polycarbonate, poly (5-methyl-5-(2-hydroxypropyl) aminocarbonyl-1, 3-dioxan-2-one), designed as a degradable alternative for PHPMA and PEG. Macromolecules. 2015;48:8797–8805.
  • Guo Z, Li Q, Liu X, et al. Synthesis and phase behavior of new biodegradable liquid crystalline polycarbonate derived from side chain cholesteryl derivative. Liq Cryst. 2016;43:91–101.
  • Chen G, Yang L, Liu X, et al. Main-chain biodegradable liquid crystal derived from cholesteryl derivative end-capped poly (trimethylene carbonate): synthesis and characterisation. Liq Cryst. 2017;44:1050–1058.
  • Xie Y, Hu J, Dou Q, et al. Synthesis and mesomorphism of new aliphatic polycarbonates containing side cholesteryl groups. Liq Cryst. 2016;43:1486–1494.
  • Yao D, Li P, Liu X, et al. New side chain liquid crystal aliphatic polycarbonate with pendant functionalized diosgenyl groups: I. synthesis and mesomorphism. Colloid Polym. Sci. 2015;293:3049–3059.
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: between monomers and polymers. Chem Soc Rev. 2007;36:2096–2124.
  • Chan TN, Lu Z, Yam WS, et al. Non-symmetric liquid crystal dimers containing an isoflavone moiety. Liq Cryst. 2012;39:393–402.
  • Lee HC, Lu Z, Henderson PA, et al. Cholesteryl-based liquid crystal dimers containing a sulfur-sulfur link in the flexible spacer. Liq Cryst. 2012;39:259–268.
  • Donaldson T, Henderson PA, Achard MF, et al. Non-symmetric chiral liquid crystal trimers. Liq Cryst. 2011;38:1331–1339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.