116
Views
4
CrossRef citations to date
0
Altmetric
Articles

Anchoring transition of confined prolate hard spherocylinder liquid crystals: hard needle-wall potential

&
Pages 1396-1407 | Received 01 Oct 2017, Accepted 12 Feb 2018, Published online: 14 Mar 2018

References

  • Koda T, Hyodo Y, Momoi Y, et al. Hard spherocylinders of two different lengths as a model system of a nematic liquid crystal on an anisotropic substrate. J Phys Soc Jpn. 2016;85:24601.
  • Jerome B. Surface effects and anchoring in liquid crystals. Rep Prog Phys. 1991;54:391–451.
  • Barmes F, Cleaver DJ. Using particle shape to induce tilted and bistable liquid crystal anchoring. Phys Rev E. 2005;71:021705-1-11.
  • Mauguin MC. Sur les cristaux liquides de Lehmann. Bull Soc Fr Miner. 1911;34:71–117. Available from: https://doi.org/BSFMAU
  • Allen MP. Molecular simulation and theory of liquid crystal surface anchoring. Mol Phys. 1999;96:1391–1397.
  • Teixeira PIC. Structure of a nematic liquid crystal between aligning walls. Phys Rev E. 1997;55:2876–2881.
  • Osipov MA, Hess S. Density functional approach to the theory of interfacial properties of nematic liquid crystals. J Chem Phys. 1993;99:4181–4190.
  • del Río EM, Telo da Gama MM, de Miguel E, et al. Surface induced alignment at model nematic interfaces. Phys Rev E. 1995;52:5028–5039.
  • Tjipto‐Margo B, Sullivan DE. Molecular interactions and interface properties of nematic liquid crystals. J Chem Phys. 1988;88:6620–6630.
  • del Río EM, Telo da Gama MM, de Miguel E, et al. Wetting and interfacial order at nematic free surfaces. Europhys Lett. 1996;35:189–194.
  • Gruhn T, Schoen M. Microscopic structure of molecularly thin confined liquid crystal films. Phys Rev E. 1997;55:2861–2875.
  • Chiccoli C, Guzzetti S, Pasini P, et al. Computer simulations of nematic displays. Mol Cryst Liq Cryst. 2001;360:119–129.
  • Memmer R, Fliegans O. Monte Carlo simulation of twisted nematic and supertwisted nematic liquid crystal cells. Phys Chem Chem Phys. 2003;5:558–566.
  • Van Roij R, Dijkstra M, Evans R. Orientational wetting and capillary nematization of hard-rod fluids. Eur Phys Lett. 2000;49:350–356.
  • Dijkstra M, Van Roij R, Evans R. Wetting and capillary nematization of a hard-rod fluid: a simulation study. Phys Rev E. 2001;63:051703-1-7.
  • Aghaei Semiromi M, Avazpour A. Computer simulation of confined prolate hard spherocylinder liquids between hard walls. Liq Cryst. 2017;1–8. DOI:10.1080/02678292.2017.1318185
  • Mukherjee PK. Isotropic to smectic A phase transition: a review. J Mol Liq. 2014;190:99–111.
  • Sluckin TJ. Anchoring transitions at liquid crystal surfaces. Phys A Stat Mech Appl. 1995;213:105–109.
  • de las Heras D, Mederos L, Velasco E. Capillary and anchoring effects in thin hybrid nematic films and connection with bulk behavior. Phys Rev E. 2009;79:011712-1-8.
  • Chrzanowska A, Teixeira PIC, Ehrentraut H, et al. Ordering of hard particles between hard walls. J Phys Condens Matter. 2001;13:4715–4726.
  • Barmes F, Cleaver DJ. Computer simulation of a liquid-crystal anchoring transition. Phys Rev E. 2004;69:061705-1-12.
  • Cleaver DJ, Teixeira PIC. Discontinuous structural transition in a thin hybrid liquid crystal film. Chem Phys Lett. 2001;338:1–6.
  • Downton MT, Allen MP. Computer simulation of liquid crystal surface modification. Europhys Lett. 2004;65:48–54.
  • Teixeira PIC, Barmes F, Anquetil-Deck C, et al. Simulation and theory of hybrid aligned liquid crystal films. Phys Rev E. 2009;79:11709-1-9.
  • Moradi M, Wheatley RJ, Avazpour A. Density functional theory of liquid crystals and surface anchoring. Phys Rev E. 2005;72:61706-1-7.
  • Anquetil-Deck C, Cleaver DJ, Atherton TJ. Competing alignments of nematic liquid crystals on square patterned substrates. Phys Rev E. 2012;86:41707-1-10.
  • Patel JS, Yokoyama H. Continuous anchoring transition in liquid crystals. Nature. 1993;362:525–527.
  • Jagemalm P, Komitov L. Temperature induced anchoring transition in nematic liquid crystals with two-fold degenerate alignment. Liq Cryst. 1999;23:1–8.
  • Barbero G, Popa-Nita V. Model for the planar homeotropic anchoring transition induced by trans cis isomerization. Phys Rev E. 2000;61:6696–6698.
  • Alkhairalla B, Allinson H, Boden N, et al. Anchoring and orientational wetting of nematic liquid crystals on self assembled monolayer substrates: an evanescent wave ellipsometric study. Phys Rev E. 1999;59:3033–3039.
  • Jérôme B, O’Brien J, Ouchi Y, et al. Bulk reorientation driven by orientational transition in a liquid crystal monolayer. Phys Rev Lett. 1993;71:758–761.
  • Teixeira PIC, Sluckin TJ. Microscopic theory of anchoring transitions at the surfaces of pure liquid crystals and their mixtures. I. The fowler approximation. J Chem Phys. 1992;97:1498–1509.
  • Teixeira PIC, Sluckin TJ. Microscopic theory of anchoring transitions at the surfaces of pure liquid crystals and their mixtures. II. The effect of surface adsorption. J Chem Phys. 1992;97:1510–1519.
  • Lange H, Schmid F. Surface anchoring on layers of grafted liquid crystalline chain molecules: a computer simulation. J Chem Phys. 2002;117:362–368.
  • Lange H, Schmid F. Surface anchoring on liquid crystalline polymer brushes. Comput Phys Commun. 2002;147:276–281.
  • Lange H, Schmid F. An anchoring transition at surfaces with grafted liquid crystalline chain molecules. Eur Phys J E. 2002;7:175–182.
  • Cheung DL. Monte Carlo simulations of liquid crystals between microstructured substrates. J Chem Phys. 2008;128:194902-1-6.
  • de las Heras D, Velasco E, Mederos L. Effects of wetting and anchoring on capillary phenomena in a confined liquid crystal. J Chem Phys. 2004;120:4949–4957.
  • Koda T, Uchida M, Nishioka A, et al. Alignment of hard spherocylinders by hard spheres on substrates. Mol Cryst Liq Cryst. 2015;612:24–32.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York (NY): Clarendon Press; 1989.
  • Vega C, Lago S. A fast algorithm to evaluate the shortest distance between rods. Comput Chem. 1994;18:55–59.
  • Bolhuis PG, Brader JM, Schmidt M. Simulation and theory of fluid fluid interfaces in binary mixtures of hard spheres and hard rods. J Phys Condens Matter. 2003;15:S3421–S3428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.