1,089
Views
12
CrossRef citations to date
0
Altmetric
Articles

An experimental and computational study of calamitic and bimesogenic liquid crystals incorporating an optically active [2,2]-paracyclophane

Pages 1567-1573 | Received 25 Jan 2018, Accepted 13 Mar 2018, Published online: 22 Mar 2018

References

  • Yang KX, Lemieux RP. Synthesis and characterization of C2 -symmetric biphenyls as novel dopants for induced ferroelectric liquid crystal phases. Mol Cryst Liq Crys A. 1995;260:247–253.
  • Yang K, Campbell B, Birch G, et al. Induction of a ferroelectric SC* liquid crystal phase by an atropisomeric dopant derived from 4,4‘-Dihydroxy-2,2‘-dimethyl-6,6‘-dinitrobiphenyl. J Am Chem Soc. 1996;118:9557–9561.
  • Coles HJ, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436:997–1000.
  • Archbold CT, Davis EJ, Mandle RJ, et al. Chiral dopants and the twist-bend nematic phase – induction of novel mesomorphic behaviour in an apolar bimesogen. Soft Matter. 2015;11:7547–7557.
  • Pye PJ, Rossen K, Reamer RA, et al. A new planar chiral bisphosphine ligand for asymmetric catalysis: highly enantioselective hydrogenations under mild conditions. J Am Chem Soc. 1997;119:6207–6208.
  • Burk MJ, Hems W, Herzberg D, et al. A catalyst for efficient and highly enantioselective hydrogenation of aromatic, heteroaromatic, and α,β-Unsaturated ketones. Org Lett. 2000;2:4173–4176.
  • Morisaki Y, Sawada R, Gon M, et al. New types of planar chiral [2.2]Paracyclophanes and construction of one-handed double helices. Chem-Asian J. 2016;11:2524–2527.
  • Rozenberg VI, Popova EL, Hopf H. Thermotropic liquid crystals from planar chiral compounds: [2.2]Paracyclophane as a Mesogen core. Helv Chim Acta. 2002;85:431–441.
  • Popova EL, Rozenberg VI, Starikova ZA, et al. Thermotropic liquid crystals from planar chiral compounds: optically active mesogenic [2.2]Paracyclophane derivatives. Angew Chem Int Edit. 2002;41:3411–3414.
  • Cipiciani A, Fringuelli F, Mancini V, et al. Enzymatic kinetic resolution of (±)-4-acetoxy[2.2]paracyclophane by Candida cylindracea lipase. An efficient route for the preparation of (+)-R-4-hydroxy- and (+)-S-4-acetoxy[2.2]paracyclophane. J Org Chem. 1997;62:3744–3747.
  • Mandle RJ, Davis EJ, Voll CCA, et al. Self-organisation through size-exclusion in soft materials. J Mater Chem C. 2015;3:2380–2388.
  • Mandle RJ, Stevens MP, Goodby JW. Developments in liquid-crystalline dimers and oligomers. Liq Cryst. 2017;1–14. DOI:10.1080/02678292.2017.1343500,
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. 2009.
  • Tarini M, Cignoni P, Montani C. Ambient occlusion and edge cueing for enhancing real time molecular visualization. Ieee T Vis Comput Gr. 2006;12:1237–1244.
  • Archbold CT, Mandle RJ, Andrews JL, et al. Conformational landscapes of bimesogenic compounds and their implications for the formation of modulated nematic phases. Liq Cryst. 2017;1–10. DOI:10.1080/02678292.2017.1360954
  • Ninov JI, Stefanova TK, Petrov PS. Vapor-Liquid equilibria at 101.3 kPa for Diethylamine + Chloroform. J Chem Eng Data. 1995;40:199–201.
  • Paterson DA, Gao M, Kim YK, et al. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12:6827–6840.
  • Ferrarini A, Nordio PL, Shibaev PV, et al. Twisting power of bridged binaphthol derivatives: comparison of theory and experiment. Liq Cryst. 1998;24:219–227.
  • Kuball HG, Weiss B, Beck AK, et al. TADDOLs with unprecedented helical twisting power in liquid crystals. Preliminary communication. Helv Chim Acta. 1997;80:2507–2514.
  • Gray GW, McDonnell DG. The relationship between helical twist sense, absolute configuration and molecular structure for non-sterol cholesteric liquid crystals. Mol Cryst Liq Cryst. 1976;34:211–217.
  • Gray GW, Mcdonnell DG. Some cholesteric derivatives of S-(+)-4-(2′-Methylbutyl) Phenol. Mol Cryst Liq Cryst. 1978;48:37–52.
  • Mandle RJ, Davis EJ, Archbold CT, et al. Apolar bimesogens and the incidence of the twist-bend nematic phase. Chem-Eur J. 2015;21:8158–8167.
  • Mandle RJ. The dependency of twist-bend nematic liquid crystals on molecular structure: a progression from dimers to trimers, oligomers and polymers. Soft Matter. 2016;12:7883–7901.
  • Mandle RJ. The shape of things to come: the formation of modulated nematic mesophases at various length scales. Chem-Eur J. 2017;23:8771–8779.
  • Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620.
  • Abberley JP, Jansze SM, Walker R, et al. Structure–property relationships in twist-bend nematogens: the influence of terminal groups. Liq Cryst. 2017;44:68–83. DOI:10.1080/02678292.2016.1275303
  • Mandle RJ, Goodby JW. Progression from nano to macro science in soft matter systems: dimers to trimers and oligomers in twist-bend liquid crystals. Rsc Adv. 2016;6:34885–34893.
  • Mandle RJ, Davis EJ, Voll CCA, et al. The relationship between molecular structure and the incidence of the NTB phaseLiq Cryst. 2015;42:688–703.
  • Mandle RJ, Davis EJ, Archbold CT, et al. Microscopy studies of the nematic NTB phase of 1,11-di-(1′′-cyanobiphenyl-4-yl)undecane. J Mater Chem C. 2014;2:556–566.