618
Views
37
CrossRef citations to date
0
Altmetric
Article

Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals

, , , , , , , & show all
Pages 185-192 | Received 28 Apr 2018, Accepted 28 May 2018, Published online: 10 Jun 2018

References

  • Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev. 2007;11(7):1388–1413.
  • Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energ Buildings. 2008;40(3):394–398.
  • LaFrance M. Technology roadmap: energy efficient building envelopes. Paris: IEA; 2013.
  • Good C, Chen J, Dai Y, et al. Hybrid photovoltaic-thermal systems in buildings–a review. Energy Procedia. 2015;70:683–690.
  • Ding J, Yan Q. Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Sci China Mater. 2017;60(11):1063–1078.
  • Debije MG, Verbunt PP. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energ Mater. 2012;2(1):12–35.
  • Loonen RC, Trčka M, Cóstola D, et al. Climate adaptive building shells: state-of-the-art and future challenges. Renew Sust Energ Rev. 2013;25(5):483–493.
  • Liu Y, Zhang H, Sun Y, et al. Ada-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells. Sci China Mater. 2017;60(1):49–56.
  • Cai Y, Guo X, Sun X, et al. A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Sci China Mater. 2016;59(6):427–434.
  • Fuh AY-G, Chih SY, Wu ST. Advanced electro-optical smart window based on PSLC using a photoconductive TiOPc electrode. Liq Cryst. 2018;45(6):864–871.
  • Mateen F, Oh H, Jung W, et al. Polymer dispersed liquid crystal device with integrated luminescent solar concentrator. Liq Cryst. 2018;45(4):498–506.
  • Fuh AY-G, Shin ZB, Yang CH, et al. Electrically controllable smart window with greyscale based on polymer-stabilised cholesteric texture films. Liq Cryst. 2016;43(12):1784–1790.
  • Ochoa CE, Aries MB, van Loenen EJ, et al. Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort. Appl Energ. 2012;95(2):238–245.
  • Gutierrez MP, Lee LP. Multiscale design and integration of sustainable building functions. Science. 2013;341(6143):247–248.
  • Ye H, Meng X, Xu B. Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window. Energ Buildings. 2012;49(2):164–172.
  • Hoffmann S, Lee ES, Clavero C. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications. Sol Energy Mater Sol Cells. 2014;123(123):65–80.
  • Khandelwal H, Debije MG, White TJ, et al. Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. J Mater Chem A. 2016;4(16):6064–6069.
  • Arsenault H, Hébert M, Dubois M-C. Effects of glazing colour type on perception of daylight quality, arousal, and switch-on patterns of electric light in office rooms. Build Environ. 2012;56(56):223–231.
  • Yang H, Mishima K, Matsuyama K, et al. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites. Appl Phys Lett. 2003;82(15):2407–2409.
  • Guo R, Li K, Cao H, et al. Chiral polymer networks with a broad reflection band achieved with varying temperature. Polymer. 2010;51(25):5990–5996.
  • Llordés A, Garcia G, Gazquez J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature. 2013;500(7462):323.
  • Xianyu H, Faris S, Crawford GP. In-plane switching of cholesteric liquid crystals for visible and near-infrared applications. Appl Optics. 2004;43(26):5006–5015.
  • Khandelwal H, Schenning AP, Debije MG. Infrared regulating smart window based on organic materials. Adv Energ Mater. 2017;7(14):1602209.
  • Khandelwal H, Timmermans GH, Debije MG, et al. Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density. Chem Commun. 2016;52(66):10109–10112.
  • Khandelwal H, Loonen RC, Hensen JL, et al. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings. Sci Rep. 2015;5:11773.
  • Bahr C, Kitzerow H-S. Chirality in liquid crystals. New York (NY): Springer; 2001.
  • S-T W, Yang D-K. Reflective liquid crystal displays. New Jersey(NJ): Wiley; 2001.
  • Meier G. Handbook of liquid crystals. Von h. Kelker und r. Hatz. Verlag chemie, weinheim 1980. Xviii, 917 s., geb. Dm 420.00. Angew Chem. 1980;92(8):667–668.
  • Tondiglia VP, Natarajan LV, Bailey CA, et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt Mater Express. 2014;4:1465–1472.
  • Tondiglia V, Natarajan L, Bailey C, et al. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J Appl Phys. 2011;110:053109.
  • Nemati H, Liu S, Zola RS, et al. Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter. 2015;11(6):1208–1213.
  • Lee KM, Tondiglia VP, Lee T, et al. Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals. J Mater Chem C. 2015;3(34):8788–8793.
  • Lu L, Sergan V, Bos PJ. Mechanism of electric-field-induced segregation of additives in a liquid-crystal host. Phys Rev E. 2012;86(1):051706.
  • Bremer M, Naemura S, Tarumi K. Model of ion solvation in liquid crystal cells. Jpn J Appl Phys. 1998;37(37):L88- L90.
  • Son J-H, Park SB, Zin W-C, et al. Ionic impurity control by a photopolymerisation process of reactive mesogen. Liq Cryst. 2013;40(4):458–467.
  • Rajaram CV, Hudson S, Chien L. Morphology of polymer-stabilized liquid crystals. Chem Mater. 1995;7(12):2300–2308.
  • Hu X, de Haan LT, Khandelwal H, et al. Cell thickness dependence of electrically tunable infrared reflectors based on polymer stabilized cholesteric liquid crystals. Sci China Mater. 2017, 1–7.
  • Lee KM, Tondiglia VP, Godman NP, et al. Blue-shifting tuning of the selective reflection of polymer stabilized cholesteric liquid crystals. Soft Matter. 2017;13(35):5842–5848.
  • Yu M, Wang L, Nemati H, et al. Effects of polymer network on electrically induced reflection band broadening of cholesteric liquid crystals. J Polym Sci Pol Chem. 2017;55:835–846.
  • Lu H, Chu Y, Jing S, et al. Characterisation and effect of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liq Cryst. 2017;44(3):437–443.
  • Lu H, Song Z, Zhang J, et al. The influence of helical twisting power on the electro-optical properties of reverse-mode polymer-stabilised cholesteric texture. Liq Cryst. 2014;41(4):615–620.
  • Dierking I. Polymer network–stabilized liquid crystals. Adv Mater. 2000;12(3):167–181.
  • Dierking I, Kosbar L, Lowe A, et al. Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures ii. The effect of uv curing conditions. Liq Cryst. 1998;24(3):397–406.
  • Guo J, Liu F, Chen F, et al. Realisation of cholesteric liquid-crystalline materials reflecting both right-and left-circularly polarised light using the wash-out/refill technique. Liq Cryst. 2010;37(2):171–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.