303
Views
14
CrossRef citations to date
0
Altmetric
Article

Dielectric properties of four room temperature ferroelectric and antiferroelectric multi-component liquid crystalline mixtures

&
Pages 234-248 | Received 05 Jun 2018, Accepted 12 Jun 2018, Published online: 03 Jul 2018

References

  • Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett. 1971;18:127–128.
  • Clark NA, Lagerwall ST. Sub microsecond bistable electro-optic switching in liquid crystals. Appl Phys Lett. 1980;36:899–902.
  • Scheffer TJ, Nehring J. A new, highly multiplexible liquid crystal display. Appl Phys Lett. 1984;45:1021–1022.
  • Clark NA, Handschy MALagerwall ST. Ferroelectric liquid crystal electro-optics using the surface stabilized structure. Mol Cryst Liq Cryst. 1983;94:213-234.
  • Wahl J, Matuszczyk T. Experimental driver and addressing techniques for ferroelectric liquid crystal devices. J Phys E: Scientific Instr. 1988;21:460–466.
  • Vass DG, Hossack WJ, Nath S. A high resolution, full colour, head mounted ferroelectric liquid crystal-over-silicon display. Ferroelectrics. 1988;213:209–218.
  • Beresnev LA, Chigrinov VG, Dergachev DI, et al. Deformed helix ferroelectric liquid crystal display: A new electrooptic mode in ferroelectric chiral smectic C liquid crystals. Liq Cryst. 1989;5:1171–1177.
  • Hartmann JAMW. Ferroelectric liquid crystal displays for television application. Ferroelectrics. 1991;122:1–26.
  • Heeks SK, Mosley A, Nicholas BM. Large area ferroelectric liquid crystal displays. Ferroelecrrics. 1991;122:27–34.
  • Yeoh CTH, Lister SJS, Mosley A. Addressing schemes for ferroelectric liquid crystal matrix displays. Ferroelectrics. 1992;132:293–307.
  • Maltese P. Advances and problems in the development of ferroelectric liquid crystal displays. Mol Cryst Liq Cryst. 1992;215:57–72.
  • Crossland WA, Davey AB, Redmond MM. Electro-optical bistability in ferroelectric liquid crystal switching devices for use in displays and real-time holography. Ferroelectrics. 2004;312:3–23.
  • Wang JKim C, inventor; Samsung Electronics Co. Ltd, assignee. Ferroelectric liquid crystal display (FLCD) manufacturingmethod. US patent US 2004/ 0008315 A1. 2004 Jan 15
  • Fujikake H, Sato H. Flexible display technologies using ferroelectric liquid crystal: low driving-voltage panel fabrication. Ferroelectrics. 2008;364:86–94.
  • Chigrinov VG, Srivastava AK. Ferro-electric liquid crystal cells for advanced applications in displays and photonics. Mol Cryst Liq Cryst. 2014;595:39–49.
  • Srivastava AK, Chigrinov VG, Kwok HS. Ferroelectric liquid crystals: excellent tool for modern displays and photonics. J Soc Inf Disp. 2015;23:253–272.
  • Chandani ADL, Ouchi Y, Takezoe H, et al. Novel phases exhibiting tristable switching. Jpn J Appl Phys. 1989;28:L1261.
  • Chandani ADL, Gorecka G, Ouchi Y, et al. Antiferroelectric chiral smectic phases responsible for the trislable switching in MHPOBC. Jpn J Appl Phys. 1989;28:L1265.
  • Gouda F, Skarp K, Lagerwall ST. Dielectric studies of the soft mode and Goldstone mode in ferroelectric liquid crystals. Ferroelecrrics. 1991;113:165–206.
  • Yamamoto N, Koshoubu N, Mori N, et al. Full-color antiferroelectric liquid crystal display. Ferroelectrics. 1993;149:295–304.
  • Fukuda A, Takanishi Y, Isozaki T, et al. Antiferroelectric chiral smectic liquid crystals. J Mater Chem. 1994;4:997–1016.
  • D’Havé K, Rudquist P, Lagerwall ST, et al. Solution of the dark state problem in antiferroelectric liquid crystal displays. Appl Phys Lett. 2000;76:3528–3530.
  • D’Havé K, Dahlgren A, Rudquist P, et al. Antierroelectric liquid crystals it 45° tilt a new class of promising electrooptic materials. Ferroelectrics. 2000;244:115–121.
  • D’Havé K, Rudquist P, Matuszczyk M, et al. Antiferroelectric liquid crystals with 45° tilt: new elec-tro-optic effects in liquid crystals. Proc SPIE. 2000;3955:33–44.
  • Lagerwall ST, Dahlgren A, Jägemalm P, et al. Unique electro-optical properties of liquid crystals designed for molecular optics. Adv Funct Mater. 2001;11:87–94.
  • Oton JM, Quintana X, Castillo PL. Antiferroelectric liquid crystal displays. Opto-Elec Rev. 2004;12:263–269.
  • Rudquist P, Elfström D, Lagerwall ST, et al. Polymer-stabilized orthoconic antiferroelectric liquid crystals. Ferroelectrics. 2006;344:177–188.
  • Rudquist P. Orthoconic antiferro-electric liquid crystals. Liq Cryst. 2013;40:1678–1697.
  • Dłubacz A, Marzec M, Dardas D, et al. New antiferroelectric liquid crystal for use in LCD. Phase Transitions. 2016;89:349–358.
  • Debnath A, Mandal PK. Effect of fluorination on the phase sequence, dielectric and electro-optical properties of ferroelectric and antiferroelectric mixtures. Liq Cryst. 2017;44:2192–2202.
  • Kuczyunski W, Stegemeyer H. Ferroelectric properties of smectic C liquid crystals with induced helical structure. Chem Phys Lett. 1980;70:123–126.
  • Wand MD, Vohra R, Thurmes W, et al. New ferroelectric liquid crystal host materials for use in optoelectronic applications. Proc SPIE. 1994;2175:1–6.
  • Thurmes W, Wand MD, Vohra R, et al. FLC materials form microdisplay applications. Proc SPIE. 1997;3015:1–6.
  • Wand MD, Thurmes W, Vohra R. FLC displays for high resolution magnified view and projection applications. Proc SPIE. 1999;3635:1–6.
  • Bennis N, Dabrowski R, Spadlo A, et al. Non-conventional alignment surfaces for antiferroelectric liquid crystals. Mol Cryst Liq Cryst. 2004;422:37–45.
  • Mandal PK, Haldar S, Lapanik A, et al. Induction and enhancement of ferroelectric smectic C* phase in multi-component room temperature mixtures. Jpn J App Phys. 2009;48(1–4):011501.
  • Chełstowska A, Czerwiński M, Tykarska M, et al. The influence of antiferroelectric compounds on helical pitch of orthoconic W-1000 mixture. Liq Cryst. 2014;41:812–820.
  • Debnath A, Mandal PK. Wide range room temperature ferroelectric liquid crystal mixture with microsecond order switching. J Mol Liq. 2016;221:287–291.
  • Milewska K, Drzewiński W, Czerwiński M, et al. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase. Mat Chem Phys. 2016;171:33–38.
  • Kurp K, Tykarska M, Drzewicz A, et al. Effect of ferroelectric liquid crystalline quaterphenyl structure and handedness on helical pitch length in bicomponent mixtures. Liq Cryst. 2017;44:618–627.
  • Kurp K, Czerwiński M, Tykarska M, et al. Design of advanced multicomponent ferroelectric liquid crystalline mixtures with submicrometre helical pitch. Liq Cryst. 2017;44:748–756.
  • Węglowska D, Perkowski P, Chrunik M, et al. The effect of dopant chirality on the properties of self-assembling materials with a ferroelectric order. Phy Chem Chem Phys. 2018;20:9211–9220.
  • Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. Ferroelectrics. 2004;301:15–45.
  • Takezoe H. Historical overview of polar liquid crystals. Ferroelectrics. 2014;468:1–17.
  • Panarin YP, Kalinovskaya VJK. The investigation of the relaxation processes in antiferroelectric liquid crystals by broad band dielectric and electro-optic spectroscopy. Liq Cryst. 1994;25:241–252.
  • Marino S, Daran FD, Fuente MRD. Molecular and collective modes in ferroelectric liquid crystals studied by dielectric spectroscopy. Liq Cryst. 1997;23:275–283.
  • Roy SS, Majumder TP, Roy SK. Soft mode dielectric relaxation under the influence of bias electric field of a ferroelectric liquid crystal mixture. Mol Cryst Liq Cryst. 1997;304:315–320.
  • Wang J, Kim J. Mode analysis of low frequency dielectric losses in surface stabilized ferroelectric liquid crystal. Ferroelectrics. 2000;245:51–59.
  • Srivastava A, Dhar R, Agrawal VK, et al. Switching and electrical properties of ferro- and antiferroelectric phases of MOPB(H)PBC. Liq Cryst. 2008;35:1101–1108.
  • Nayek P, Kundu S, Roy SK, et al. Electro-optical properties of an orthoconic liquid crystal mixture (W-182) and its molecular dynamics. J Appl Phys. 2008;103:054103–054106.
  • Perkowski P, Ogrodnik K, Picek K, et al. Influence of the bias field on dielectric properties of the SmCA* in the vicinity of the SmC*−SmCA* phase transition. Liq Cryst. 2011;38:1159–1167.
  • Marino L, Tone CM, Ionescu A, et al. Evidence of both unusual dielectric mode at low frequencies and the co-existence of antiferroelectric, ferroelectric and paraele-ctric phases in a novel antiferroelectric liquid crystals mixture. J Mol Liq. 2017;247:43–56.
  • Biradar AM, Wróbel S, Haase W. Dielectric relaxation in the smectic-A and smectic-C* phases of a ferroelectric liquid crystal. Phys Rev A: At Mol Opt Phys. 1989;39:2693–2702.
  • Marzec M, Dabrowski R, Fafara A, et al. Goldstone mode and domain mode relaxation in ferroelectric phases of 4′-[(S,S)-2,3-epoxyhexyloxy]phenyl4-(decy loxy)benzoate(EHPDB). Ferroelectrics. 1996;180:127–135.
  • Buivydas M, Gouda F, Anderson G, et al. Collective and non-collective excitations in antiferroelectric and ferroelectric liquid crystals studied by dielectric relaxation spectroscopy and electro-optic measurements. Liq Cryst. 1997;23:723–739.
  • Panarin Y, Kalinovskaya O, Vij J. The investigation of the relaxation processes in antiferroelectric liquid crystals by broad band dielectric and electro-optic spectroscopy. Liq Cryst. 1998;25:241–252.
  • Wrobel: S, Haase W, Wrobel S, editors. Dielectric relaxation spectroscopy, Relaxation phenomena — liquid crystals, magnetic systems, polymers, high-TC superconductors, metallic glasses. Berlin-Heidelberg: Springer -Verlag; 2003. p. 13–35.
  • Marzec M, Mikulko A, Wróbel S. Alpha sub-phase in a new ferroelectric fluorinated compound. Liq Cryst. 2004;31:153–159.
  • Mandal PK, Jaishi BR, Haase W. Optical microscopy, DSC and dielectric relaxation spectroscopy studies on a partially fluorinated ferroelectric liquid crystalline compound MHPO(13F)BC. Phase Transit. 2006;79:223–235.
  • Hiller S, Biradar AM, Wrobel S, et al. Dielectric behaviour at the smectic-C*-chiral-nematic phase transition of a ferroelectric liquid crystal. Phys Rev A. 1996;53:641–649.
  • Hiller S, Beresnev LA, Wróbel S, et al. The domain mode in a single component ferroelectric liquid crystal - dielectrical and electrooptical investiga-tions. Berichte Bunsenges Phys Chem. 1993;97:1247–1252.
  • Marzec M, Haase W, Jakob E, et al. The existence of four dielectric modes in the planar oriented S*c phase of a fluorinated substance. Liq Cryst. 1993;14:1967–1976.
  • Wróbel S, Cohen G, Davidov D, et al. Dielectric, electro optic and X-ray studies of a room temperature ferroelectric mixture. Ferroelectrics. 1999;166:211–222.
  • Buivydas M, Gouda F, Lagerwall ST, et al. The molecular aspect of the double absorption peak in the dielectric spectrum of the antiferroelectric liquid crystal phase. Liq Cryst. 1995;18:879–886.
  • Zeks B. Landau free energy expansion for chiral ferroelectric smectic liquid crystals. Mol Cryst Liq Cryst. 1984;114:259–270.
  • Carlsson T, Zeks B, Filipic C, et al. Theoretical model of the frequency and temperature dependence of the complex dielectric constant of ferroelectric liquid crystals near the smectic-C*–smectic-A phase transition. Phys Rev A. 1990;42:877–889.
  • Zurowskan M, Dabrowski R, Dziaduszek J, et al. Synthesis and mesomorphic properties of chiral esters comprising partially fluorinated alkoxyalkoxy terminal chains and a 1-methylheptyl chiral moiety. Mol Cryst Liq Cryst. 2008;495:145–157.
  • Botcher CJF, Bordewijk P. Theory of electric polarization. Vol. I. Amsterdam: Elsevier; 1978.
  • Dey KC, Mandal PK, Dąbrowski R. Effect of lateral fluorination in antiferro-electric and ferroelectric mesophases: synchrotron X-ray diffraction, dielectric spectroscopy and electro-optic study. J Phys Chem Solids. 2016;88:14–23.
  • Stanisław A, Różański TJ. Collective and antiferroelectric dielectric modes in a highly tilted three‐ring ester. Liq Cryst. 2007;34:519–526.
  • Perkowski K, Ogrodnik K, Piecek W, et al. High frequency mode in new antiferroelectric mixture. Mol Cryst Liq Cryst. 2010;525:50–56.
  • Ghosh S, Nayek P, Roy SK, et al. Dielectric relaxation spectroscopy and electro-optical studies of a new, partially fluorinated orthoconic antiferroelectric liquid crystal material exhibiting V-shaped switching. Liq Cryst. 2010;37:369–375.
  • Dhar R, Mishra A, Pandey AS, et al. Dielectric and electro-optical response of a room temperature tri-component antiferro-electric mixture. Liq Cryst. 2013;40:1466–1476.
  • Fitas J, Marzec M, Kurp K, et al. Electro-optic and dielectric properties of new binary ferroelectric and antiferro-electric liquid crystalline mixtures. Liq Cryst. 2017;44:1468–1476.
  • Ghosh S, Nayek P, Roy S. Dielectric relaxation spectroscopy and electro-optical studies of a new, partially fluorinated orthoconic antiferroelectric liquid crystal material exhibiting V-shaped switching. Liq Cryst. 2010;34:369–375.
  • Dey KC, Mandal PK, Dąbrowski R. Investigation on a laterally fluorinated orthoconic antiferroelectric liquid crystal by different experimental techniques. Proc 60th DAE Solid State Symp (AIP). 2016;731(040015):1–3.
  • Kumar A, Prakash J, Biradar AM. Non-linear behaviour of phason mode with bias field in ferroelectric liquid crystals. Liq Cryst. 2010;37(247–253).
  • Haldar S, Dey KC, Sinha D, et al. X-ray diffraction and dielectric spectroscopy studies on a partially fluorinated ferroelectric liquid crystal from the family of terphenyl esters. Liq Cryst. 2012;39:1196–1203.
  • Debnath A, Mandal PK, Weglowska D, et al. Induction of a room temperature ferroelectric SmC* phase in binary mixtures with moderate spontaneous polarization and sub-millisecond switching time. RSC Adv. 2016;6:84369–84378.
  • Perkowski P, Skrzypek K, Piecek W, et al. Dielectric behavior of antiferroelectric phase induced in binary mixture. Ferroelectrics. 2010;395:27–34.
  • Perkowski P, Ogrodnik K, Lada D, et al. Dielectric measurements of new antiferroelectric liquid crystals. Opt Elec Rev. 2008;16:277–280.
  • Sinha D, Debnath A, Mandal PK. Hexatic and blue phases in a chiral liquid crystal: optical polarizing microscopy, synchrotron radiation and dielectric study. Mat Res Exp. 2014;1(1–13):035101.
  • Garoff S, Rb M. Electroclinic effect at the A-C phase change in a chiral smectic liquid crystal. Phy Rev Lett. 1977;38:848–851.
  • Hemine J, Legrand C, Isaert N, et al. Dielectric evidence of an electroclinic effect in the cholesteric phase near a N *-SmA-SmC * multicritical point. Liq Cryst. 2003;30:227–234.
  • Hemine J, Legrand C, Daoudi A, et al. Influence of the proximity of a N*–SmA–SmC* multicritical point on the electroclinic effect in the cholesteric phase. Liq Cryst. 2007;34:241–249.
  • Hemine J, Daoudi A, Legrand C, et al. Dielectric spectroscopy of the Goldstone-mode relaxations in the surface stabilized chiral smectic C phase in ferroelectric liquid crystals. Ferroelectrics. 2008;371:104–109.
  • Hemine J, Daoudi A, Legrand C, et al. Electroclinic effect in the chiral smectic A and cholesteric phases at the proximity of a N*–smA–smC* multicritical point. Liq Cryst. 2010;37:1313–1319.
  • Hemine J, Daoudi A, Douali R, et al. Dielectric spectroscopy of the electroclinic effect in the ferroelectric liquid crystal materials. Spect Lett. 2014;47:341–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.