574
Views
14
CrossRef citations to date
0
Altmetric
Invited Article

Elastocaloric effect in liquid crystal elastomers from molecular simulations

ORCID Icon
Pages 1964-1969 | Received 26 Apr 2018, Published online: 05 Jul 2018

References

  • Moya X, Kar-Narayan S, Mathur ND. Caloric materials near ferroic phase transitions. Nat Mater. 2014;13:439–450.
  • Crossley S, Mathur ND, Moya X. New developments in caloric materials for cooling applications. AIP Adv. 2015;5:067153.
  • Tušek J, Engelbrecht K, Eriksen D, et al. A regenerative elastocaloric heat pump. Nat Energy. 2016;1:16134.
  • Sagotra AK, Errandonea D, Cazorla C. Mechanocaloric effects in superionic thin films from atomistic simulations. Nat Commun. 2017;8:963.
  • Lisenkov S, Herchig R, Patel S, et al. Elastocaloric effect in carbon nanotubes and graphene. Nano Lett. 2016;16:7008–7012.
  • Warner M, Terentjev EM. Liquid crystal elastomers. Oxford (UK): Oxford University Press; 2007.
  • Küpfer J, Finkelmann H. Nematic liquid single crystal elastomers. Macromol Chem Rapid Commun. 1991;12:717–726.
  • Trček M, Lavrič M, Cordoyiannis G, et al. Electrocaloric and elastocaloric effects in soft materials. Philos Transact Math Phys Eng Sci. 2016;374:20150301.
  • Cui J, Wu YM, Muehlbauer J, et al. Demonstration of high efficiency elastocaloric cooling with large Delta T using NiTi wires. Appl Phys Lett. 2012;101:073904.
  • Pieczyska EA, Gadaj SP, Nowacki WK, et al. Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy, Exp. Mech. 2006;46:531–542.
  • Shaw AJ, Kyriakides S. Themomechanical aspects of NiTi. J Mech Phys Solids. 1995;43:1243–1281.
  • Callen HB. Thermodynamics and an introduction to thermostatistics. New York (NY): John Wiley & Sons; 1985.
  • Ponomareva I, Lisenkov S. Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys Rev Lett. 2012;108:167604.
  • Berardi R, Zannoni C, Lintuvuori JS, et al. A soft-core Gay–Berne model for the simulation of liquid crystals by Hamiltonian replica exchange. J Chem Phys. 2009;131:174107–174112.
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear site-site potential. J Chem Phys. 1981;74:3316–3319.
  • Skačej G, Zannoni C. Molecular simulations shed light on supersoft elasticity in polydomain liquid crystal elastomers. Macromolecules. 2014;47:8824–8832.
  • Skačej G. Sample preparation affects the nematic-isotropic transition in liquid crystal elastomers: insights from molecular simulation. Soft Matter. 2018;14:1408–1416.
  • Bird RB, Armstrong RC, Hassager D. Dynamics of polymeric liquids. New York (NY): Wiley; 1971.
  • Urayama K, Honda S, Takigawa T. Electrooptical effects with anisotropic deformation in nematic gels. Macromolecules. 2005;38:3574–3576.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego (CA): Academic Press; 2002.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford (UK): Clarendon Press; 1991.
  • Selinger JV, Jeon HG, Ratna BR. Isotropic-nematic transition in liquid-crystalline elastomers. Phys Rev Lett. 2002;89:225701.
  • Rožič B, Kutnjak Z. private communication.
  • Collings PJ, Hird M. Introduction to liquid crystals: chemistry and physics. London (UK): Taylor and Francis; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.