215
Views
9
CrossRef citations to date
0
Altmetric
Invited Article

Low power photonic devices based on electrically controlled nematic liquid crystals embedded in poly(dimethylsiloxane)

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 2174-2183 | Received 31 May 2018, Published online: 11 Jul 2018

References

  • Khoo IC. Liquid crystals. 2nd ed. Hoboken: Wiley; 2007.
  • Asquini R, Fratalocchi A, d’Alessandro A, et al. Electro-optic routing in a nematic liquid-crystal waveguide. Appl Opt. 2005;44(19):4136–4143.
  • Donisi D, Bellini B, Beccherelli R, et al. A switchable liquid-crystal optical channel waveguide on silicon. IEEE J Quantum Electron. 2010;46(5):762–768.
  • Sirleto L, Coppola G, Breglio G, et al. Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer. Opt Eng. 2002;41(11):2890–2898.
  • Asquini R, D’Angelo J, d’Alessandro A. A switchable optical add-drop multiplexer using ion-exchange waveguides and a POLICRYPS grating overlayer. Mol Cryst Liq Cryst. 2006;450:203–214.
  • Asquini R, d’Alessandro A. All-optical switching and filtering based on liquid crystals and photosensitive composite organic materials. Mol Cryst Liq Cryst. 2013;572(1):13–23.
  • Bellini B, Larchanché JF, Vilcot JP, et al. Photonic devices based on preferential etching. Appl Opt. 2005;44(33):7181–7186.
  • De Cort W, Beeckman J, Claes T, et al. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Opt Lett. 2011;36(19):3876–3878.
  • Ptasinski J, Kim SW, Pang L, et al. Optical tuning of silicon photonic structures with nematic liquid crystal claddings. Opt Lett. 2013;38(12):2008–2010.
  • Gizzi C, Asquini R, d’Alessandro A. An integrated 2 × 2 SSFLC optical switch with channel ion-exchanged glass waveguides. Ferroelectrics. 2004;312:31–37.
  • d’Alessandro A, Donisi D, De Sio L, et al. Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating. Opt Expr. 2008;16(13):9254–9260.
  • Gilardi G, Asquini R, d’Alessandro A, et al. Widely tunable electro-optic distributed Bragg reflector in liquid crystal waveguide. Opt Express. 2010;18(11):11524–11529.
  • Asquini R, d’Alessandro A. BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55 um. Mol Cryst Liq Cryst. 2002;375:243–251.
  • Caputo R, De Luca A, De Sio L, et al. POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. J Opt A: Pure Appl Opt. 2009;11:024017.
  • d’Alessandro A, Asquini R, Trotta M, et al. All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide. Appl Phys Lett. 2010;97(9):093302.
  • Gilardi G, De Sio L, Beccherelli R, et al. Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals. Opt Lett. 2011;36(24):4755–4757.
  • Alkeskjold TT, Lægsgaard J, Bjarklev A, et al. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt Express. 2004;24(12):5757–5871.
  • Du F, Lu YQ, Wu ST. Electrically tunable liquid-crystal photonic crystal fiber. Appl Phys Lett. 2004;85(12):2181–2183.
  • Wang J, Liu Y, Zhang L, et al. Temperature-controllable beam splitter and optical filter based on filling liquid crystal into both ends of photonic crystal fibres. Liq Cryst. 2016;43(1):61–65.
  • Liu X, Liu Y, Wang Z. Double telecom band thermo-optic switch based on dual-line filled photonic liquid crystal fibres. Liq Cryst. 2017;44(3):479–483.
  • Wang L. Self-activating liquid crystal devices for smart laser protection. Liq Cryst. 2016;43(3):479–483.
  • Shtykov NM, Palto SP, Geivandov AR, et al. Lasing in micro-grating liquid crystal systems. Liq Cryst. 2017;44(8):1216–1222.
  • Psaltis D, Quake SR, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 2006;442:381–386.
  • Romeo A, Liu Q, Suo Z, et al. Elastomeric substrates with embedded stiff platforms for stretchable electronics. Appl Phys Lett. 2013;102:131904.
  • Chang-Yen DA, Eich RK, Gale BK. A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J Lightw Technol. 2005;23(6):2088–2093.
  • McDonald JC, Duffy DC, Anderson JR, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 2000;21:27–40.
  • Missinne J, Kalathimekkad S, Van Hoe B, et al. Stretchable optical waveguides. Opt Express. 2014;22(4):4168–4179.
  • d’Alessandro A, Martini L, Gilardi G, et al. Polarization independent nematic liquid crystal waveguides for optofluidic applications. IEEE Photon Technol Lett. 2015;27(16):1709–1712.
  • Rutkowska KA, Woliński TR, Asquini R, et al. Electrical tuning of the LC:PDMS channels. Phot Lett Poland. 2017;9(2):48–50.
  • Pasini P, Chiccoli C, Zannoni C. Advances in the computer simulations of liquid crystals. Dordrecht: Kluwer;2000. p. 121.
  • Lebwohl PA, Lasher G. Nematic-liquid-crystal order—A Monte Carlo calculation. Phys Rev A. 1972;6:426.
  • Chiccoli C, Pasini P, Semeria F, et al. A computer simulation of nematic droplets with radial boundary conditions. Phys Lett A. 1990;150:311–314.
  • Chiccoli C, Pasini P, Zannoni C. Elastic anisotropy and anchoring effects on the textures of nematic films with random planar surface alignment. Mol Cryst Liq Cryst. 2010;516(1):1–11.
  • Chiccoli C, Pasini P, Evangelista LR, et al. Computer simulations of the ordering in a hybrid cylindrical film of nematic liquid crystals. Phys Rev E. 2011;84:041705.
  • d’Alessandro A, Asquini R, Chiccoli C, et al. Liquid crystal channel waveguides: a Monte Carlo investigation of the ordering. Mol Cryst Liq Cryst. 2015;619:42–48.
  • d’Alessandro A, Asquini R, Chiccoli C, et al. Liquid crystal channel waveguides: A computer simulation of the application of transversal external fields. Mol Cryst Liq Cryst. 2017;649:79–85.
  • Fabbri U, Zannoni C, Monte A. Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition. Molec Phys. 1986;58(4):763–788.
  • Zhang Z, Mouritsen OG, Zuckermann MJ. Weak first-order orientational transition in the Lebwohl-Lasher model for liquid crystals. Phys Rev Lett. 1992;69:2803–2806.
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–1092.
  • Killian A. Computer simulations of nematic droplets. Liq Cryst. 1993;14(4):1189–1198.
  • Ondris-Crawford R, Boyko EP, Wagner BG, et al. Microscope textures of nematic droplets in polymer dispersed liquid crystals. J Appl Phys. 1991;69(9):6380–6386.
  • Berggren E, Chiccoli C, Pasini P, et al. Monte Carlo study of the effect of an applied field on the molecular organization of polymer-dispersed liquid-crystals droplets. Phys Rev E. 1994;49(1):614.
  • Li J, Wu ST, Brugioni S, et al. Infrared refractive indices of liquid crystals. J Appl Phys. 2005;97:073501.
  • Yeh P, Gu C. Optics of liquid crystal displays. 2nd ed. New York: Wiley; 2010.
  • Soldano LB, Pennings ECM. Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol. 1995;13(4):615–627.
  • Blahut M, Szewczuk A. Multimode interference in sensor applications. Proc SPIE. 2015;9816:98160Q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.