286
Views
8
CrossRef citations to date
0
Altmetric
Invited Article

Using liquid crystals to control surface plasmons

ORCID Icon, &
Pages 2010-2021 | Received 13 May 2018, Published online: 25 Jul 2018

References

  • Jablan M, Soljačić M, Buljan H Plasmons in graphene: fundamental properties and potential applications, Proceedings of the IEEE, 2013 101:, 1689–1704, 2013. .
  • Long J, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials”. Nat Nanotechnol. 2011;6:630–634.
  • Li Y, Li Z, Chi C, et al. Plasmonics of 2D nanomaterials: properties and applications adv. Sci. 2017;4:1600430.
  • F. Javier García de Abajo Special Issue. 2D materials for nanophotonics. ACS Photonics. 2017;4(12): 2959–2961.
  • Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies, Phys. Rev B. 2009;80:245435.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Javier F. García de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photonics. 2014;1:135–152.
  • Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature. 2012;487:77–81.
  • Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 2012;487:82–85.
  • Yang D-K, Shin-Tson W. Fundamentals of liquid crystal devices. Chichester, England: John Wiley & Sons, Ltd; 2006.
  • Muller J, Sonnichsen C, von Poschinger H, et al. Electrically controlled light scattering with single metal nanoparticles. Appl Phys Lett. 2002;81:171.
  • Liu Q, Yuan Y, Smalyukh II. Electrically and optically tunable plasmonic guest–host liquid crystals with long-range ordered nanoparticles. Nano Lett. 2014;14:4071.
  • Buchnev O, Podoliak N, Kaczmarek M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch . Adv Opt. 2015;3:674.
  • Chen K-P, Ye S-C, Yang C-Y, et al. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals. Opt Express. 2016;24:16815.
  • Hsiao Y-C, Chen-Wei S, Yang Z-H, et al. Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal. RSC Adv. 2016;6:84500–84504.
  • Franklin D, Chen Y, Vazquez-Guardado A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. 2016;6:8337.
  • Gao W, Shi G, Jin Z, et al. Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett. 2013;13:3698−3702.
  • Gao W, Shu J, Qiu C, et al. Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano. 2012;6:7806–7813.
  • Reshetnyak VY, Zadorozhnii VI, Pinkevych IP, et al. Liquid crystal control of the plasmon resonances at terahertz frequencies in graphene microribbon gratings. Phys Rev E. 2017;96:022703. doi: 10.1103/PhysRevE.96.022703.https://link.aps.org/doi/10.1103/PhysRevE.96.022703
  • Reshetnyak VY, Bunning TJ, Evans DR Tuning surface plasmons in graphene ribbons with liquid crystal layer Proc. SPIE 9940, Liquid Crystals XX, 994019 (23 September 2016); doi: 10.1117/12.2237264
  • Reshetnyak VY, Zadorozhnii VI, Pinkevych IP, et al. Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate. AIP Adv. 2018;8:045024.
  • Nakayama M. Theory of surface waves coupled to surface carriers. J Phys Soc Jpn. 1974;36:393–398.
  • Zhang Q, Xiangping L, Hossain MM, et al. Graphene surface plasmons at the near-infrared optical regime. Sci Rep. 2014;4:6559.
  • Rosenblatt D, Sharon A, Friesem AA. Resonant grating waveguide structures. IEEE J Quantum Electron. 1977;33:2038–2059.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford, England:Oxford University Press; 1995.
  • Sutormin VS, Krakhalev MN, Prishchepa OO, et al. Electro-optical response of an ionic-surfactantdoped nematic cell with homeoplanar–twisted configuration transition. Opt Mater Express. 2014;4:810.
  • Sutormin VS, Krakhaleva MN, Prishchepaa OO, et al. Zyryanov electrically controlled local fredericksz transition in a layer of a nematic liquid crystal. JETP Letters. 2012;96:511–516.
  • Ikeda T, Aya S, Araoka F, et al. Novel bistable device using anchoring transition and command surface, Appl Phys Express. 2013;6:061701.
  • Hirankittiwong P, Chattham N, Limtrakul J, et al. Optical manipulation of the nematic director field around microspheres covered with an azodendrimer monolayer. Opt Express. 2014;22:20087.
  • Khatua S, Chang W-S, Swanglap P, et al. Active modulation of nanorod plasmons. Nano Lett. 2011;11:3797–3802.
  • Kim DW, Kim YH, Jeong HS, et al. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat Nanotechnol. 2012;7:29–34.
  • Nowinowski-Kruszelnicki E, Kędzierski J, Raszewski Z, et al. High birefringence liquid crystal mixtures for electro-optical devices. Optica Applicata. 2012;XLII:167–180.
  • Chigrinov VG, Kozenkov VM, Kwok H-S. 2008. Photoalignment of liquid crystalline materials: physics and applications. Chichester, England:John Wiley & Sons Ltd. ISBN: 978-0-470-06539-6.
  • Dyadyusha AG, Khizhnyak A, Marusii T, et al. An oblique orientation of nematic liquid crystals on a photosensitive aligning polymer. Mol Cryst Liq Cryst. 1995;263:399–414.
  • Xihua L, Kozenkov VM, Yeung FS-Y, et al. Liquid-crystal photoalignment by super thin azo dye layer. Jpn J App Phys. 2006;45:203.
  • Shteyner EA, Srivastava AK, Chigrinov VG, et al. Submicron-scale liquid crystal photo-alignment. Soft Matter. 2014;9:5160.
  • Sarkissian H, Park B, Tabirian N, et al. Aligned liquid crystal: potential application for projection displays. Molecular Crystals and Liquid Crystals. 2006;451:1–19.
  • Oh-E M, Kondo K. Electro‐optical characteristics and switching behavior of the in‐plane switching mode. Appl Phys Lett. 1995;67:3895–3897.
  • Sato O, Iwata N, Kawamura J, et al. An in-plane switching liquid crystal cell with weakly anchored liquid crystals on the electrode substrate. J Mater Chem C. 2017;5:4384–4387. (Communication).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.