800
Views
37
CrossRef citations to date
0
Altmetric
Article

Normally transparent smart window with haze enhancement via inhomogeneous alignment surface

, , , , &
Pages 484-491 | Received 05 May 2018, Accepted 31 Jul 2018, Published online: 22 Aug 2018

References

  • Dierking I. Polymer network-stabilized liquid crystals. Adv Mater. 2000;12(3):167–181.
  • Cupelli D, Nicoletta FP, Manfredi S, et al. Self-adjusting smart windows based on polymer-dispersed liquid crystals. Solar Energy Materials Solar Cells. 2009;93:2008–2012.
  • Barile CJ, Slotcavage DJ, Hou J, et al. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule. 2017;1:133–145.
  • Lampert CM. Chromogenic smart materials. Materials-today. 2004;7(3):28–35.
  • Wang X, Zhang G, Ren H. A large-area optical switch using surface-expandable liquid droplets. J Disp Tech. 2016;12(12): 1565–1569.
  • Cheng S, Chen C, Lian J. High image quality of transparent display with the proprietary scattering liquid crystal. Inter Disp Manu Conference (IDMC). 2017;1166–1169.
  • Heo J, Huh J, Yoona T. Sub-millisecond switching of polymer-stabilized liquid crystals with crossed patterned electrodes. AIP Adv. 2015;5:047118.
  • Stangel L., South S.F. Startup raises $65M for its smart glass-tinting technology. 2017. Available from: http://www.bizjournals.-comsanjosenews20170131south-s-f-startup-raises-65m-forits-smart-lass.html.
  • Azens A, Granqvist CG. Electrochromic smart windows: energy efficiency and device aspects. J Solid State Electrochem. 2007;7:64–68.
  • Granqvist CG. Electrochromic materials: out of a niche. News Views Nature Mater. 2006;5:89–90.
  • Ren H, Xu S, Wu ST. Optical switch based on variable aperture. Opt Lett. 2012;37(9):1421–1423.
  • Vergaz R, Pena JS, Barrios D, et al. Modelling and electro-optical testing of suspended particle devices. Solar Energy Materials Solar Cells. 2008;92:1483–1487.
  • Kim Y, Park S, Hong J. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes. Thin Solid Films. 2009;517:3066–3069.
  • Fuh AY, Shin Z, Yang C, et al. Electrically cont-rollable smart window with greyscale based on polymer-stabilised cholesteric texture films. Liq Cryst. 2016;43(12):1784–1790.
  • Lu H, Chu Y, Jing S, et al. Characterisation and effect of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liq Cryst. 2016;44(3):437–443.
  • Chu Y, Yin Z, Sha J, et al. Regulation and control of polymer network deformation in reverse-mode polymer-stabilised cholesteric texture. Liq Cryst. 2016;44(4):688–694.
  • Alamri SN. The temperature behavior of smart windows under direct solar radiation. Solar Energy Materials Solar Cells. 2009;93:1657–1662.
  • Haghanifar S, Gao T, Rodriguez T, et al. Ultrahigh-transparency, ultrahigh-haze nanograss glass with fluid-induced switchable haze’. Optica. 2017;4(12):1522–1525.
  • Mateen F, Oh H, Jung W, et al. Polymer dispersed liquid crystal device with integrated luminescent solar concentrator. Liq Cryst. 2018;45(4):498–506.
  • Murray J, Ma D, Munday JN. Electrically controllable light trapping for self-powered switchable solar windows. ACS Photonics. 2017;4:1–7.
  • Shi Z, Shao L, Wang F, et al. Fabrication of dye-doped polymer-dispersed liquid crystals with low driving voltage based on nucleophile-initiated thiol-ene click reaction. Liq Cryst. 2018;45(4):579–585.
  • Filpo G, Formoso P, Manfredi S, et al. Preparation and characterisation of bifunctional reverse-mode polymer dispersed liquid crystals. Liq Cryst. 2017;44(10):1607–1616.
  • Tseng MC, Meng CL, Tang ST, et al. Haze free reverse mode liquid crystal light control film with inhomogeneous alignment layer. United States patent, leading intellectual property firm, Beijing, US Appl. No. 62/603,602. 2017.
  • Jeng SC, Hwang SJ. Controlling the alignment of polyimide for liquid crystal devices. Licensee InTech. 2012;5:88–91.
  • Meng C, Tseng M, Tang S, et al. Optical rewritable liquid crystal displays without a front polarizer. Opt Lett. 2018;43(4):899–902.
  • Hu W, Srivastava A, Lin X, et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments. Appl Phys Lett. 2012;100:111116.
  • Ma L, Li S, Li W, et al. Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals. Adv Opt Mater. 2015;3:1691–1696.
  • Tang M, Chen P, Zhang W, et al. Integrated and reconfigurable optical paths based on stacking optical functional films. Opt Express. 2016;24(22):25510–25514.
  • Ma L, Tang M, Hu W, et al. Smectic layer origami via preprogrammed photoalignment. Adv Mater. 2017;29:1606671–1606677.
  • Lee S, Kim S, Wu ST. Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer. J SID. 2009;17(7):551–559.
  • Yeung FS, Ho JY, Li YW, et al. Variable liquid crystal pretilt angles by nanostructured surfaces. Appl Phys Lett. 2006;88:051910.
  • Lee CY, Tseng MC, Jacob H, et al. Variable liquid crystal pretilt angle using nano-alignment surfaces. J Soc Inf Disp. 2012;43(1):289–292.
  • Tseng MC, Fan F, Lee CY, et al. Tunable lens by spatially varying liquid crystal pretilt angles. J Appl Phys. 2011;109:083109.
  • Yu H, Hsaio C. Comparison of different measurement methods for transmittance haze. Metrologia. 2009;46:S233–S237.
  • Matsushima T, Okazaki K, Yang Y, et al. New fast response time in-plane switching liquid crystal mode. J SID. 2015.; 43(2): 648–651.
  • Baek J, Kim K, Kim JC, et al. Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks. Jpn J Appl Phys. 2009;48:056507.
  • Wan TK, Tsui KC, Kwok HS, et al. Liquid crystal pretilt control by inhomogeneous surfaces. Phys Review E. 2005;72:021711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.