542
Views
2
CrossRef citations to date
0
Altmetric
Article

Scholl reaction of hexaphenylbenzenes with hexakis-alkoxy substituents

, , ORCID Icon & ORCID Icon
Pages 430-441 | Received 06 May 2018, Accepted 30 Jul 2018, Published online: 06 Sep 2018

References

  • Setia S, Sidiq S, De J, et al. Applications of liquid crystals in biosensing and organic light-emitting devices: future aspects. Liq Cryst. 2016;43:2009–2050.
  • Beccalli EM, Broggini G, Martinelli M, et al. C−C, C−O, C−N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem Rev. 2007;107:5318–5365.
  • Grzybowski M, Skonieczny K, Butenschön H, et al. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew Chem Int Ed. 2013;52:9900–9930.
  • Imrie CT, Lu Z, Picken SJ, et al. Oligomeric rod–disc nematic liquid crystals. Chem Commun. 2007;1245–1247.
  • Allen MT, Diele S, Harris KDM, et al. Intermolecular organisation of triphenylene-baseddiscotic mesogens by interdigitation of alkyl chains. J Mater Chem. 2001;11:302–311.
  • Wu J, Watson MD, Zhang L, et al. Hexakis(4-iodophenyl)-peri-hexabenzocoronene- a versatile building block for highly ordered discotic liquid crystalline materials. J Am Chem Soc. 2004;126:177–186.
  • Ito S, Wehmeier M, Brand JD, et al. Synthesis and self-assembly of functionalized hexa-peri-hexabenzocoronenes. Chem Eur J. 2000;6:4327–4342.
  • Watson MD, Jäckel F, Severin N, et al. A hexa-peri-hexabenzocoronene cyclophane: an addition to the toolbox for molecular electronics. J Am Chem Soc. 2004;126:1402–1407.
  • Pisula W, Kastler M, Wasserfallen D, et al. Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents. J Am Chem Soc. 2004;126:8074–8075.
  • van de Craats AM, Warman JM, Müllen K, et al. Rapid charge transport along self-assembling graphitic nanowires. Adv Mater. 1998;10:36–38.
  • Wu J, Fechtenkötter A, Gauss J, et al. Controlled self-assembly of hexa-peri-hexabenzocoronenes in solution. J Am Chem Soc. 2004;126:11311–11321.
  • Bushby RJ, Lozman OR. Discotic liquid crystals 25 years on. Curr Opin Colloid Interface Sci. 2002;7:343–354.
  • Li Q. Self-organized organic semiconductors: from materials to device applications. New Jersey: John Wiley & Sons; 2010.
  • Kafer D, Bashir A, Dou X, et al. Evidence for band-like transport in graphene-based organic monolayers. Adv Mater. 2010;22:384–388.
  • Pisula W, Menon A, Stepputat M, et al. A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv Mater. 2005;17:684–689.
  • Seyler H, Purushothaman B, Jones DJ, et al. Hexa-peri-hexabenzocoronene in organic electronics. Pure Appl Chem. 2012;84:1047–1067.
  • Schmidt-Mende L, Fechtenkotter A, Müllen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293:1119–1122.
  • Watson MD, Fechtenkotter A, Müllen K. Big is beautiful−“Aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem Rev. 2001;101:1267–1300.
  • Li Q. Liquid crystals beyond displays: chemistry, physics, and applications. New Jersey: John Wiley & Sons; 2012.
  • Grimsdale AC, Müllen K. The chemistry of organic nanomaterials. Angew Chem Int Ed. 2005;44:5592–5629.
  • Kato T, Yasuda T, Kamikawa Y, et al. Self-assembly of functional columnar liquid crystals. Chem Commun. 2009;729–739.
  • Li C, Liu M, Pschirer NG, et al. Polyphenylene-based materials for organic photovoltaics. Chem Rev. 2010;110:6817–6855.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • O’Neill M, Kelly SM. Liquid crystals for charge transport, luminescence, and photonics. Adv Mater. 2003;15:1135–1146.
  • O’Neill M, Kelly SM. Ordered materials for organic electronics and photonics. Adv Mater. 2011;23:566–584.
  • Kaafarani BR. Discotic liquid crystals for opto-electronic applications. Chem Mater. 2011;23:378–396.
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35:83–109.
  • Bushby RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426.
  • Wasserfallen D, Kastler M, Pisula W, et al. Suppressing aggregation in a large polycyclic aromatic hydrocarbon. J Am Chem Soc. 2006;128:1334–1339.
  • Weiss K, Beernink G, Dötz F, et al. Template-mediated synthesis of polycyclic aromatic hydrocarbons: cyclodehydrogenation and planarization of a hexaphenylbenzene derivative at a copper surface. Angew Chem Int Ed. 1999;38:3748–3752.
  • Wadumethrige SH, Rathore R. A facile synthesis of elusive alkoxy-substituted hexa-peri-hexabenzocoronene. Org Lett. 2008;10:5139–5142.
  • Feng X, Wu J, Enkelmann V, et al. Hexa-peri-hexabenzocoronenes by efficient oxidative cyclodehydrogenation: the role of the oligophenylene precursors. Org Lett. 2006;8:1145–1148.
  • Pradhan A, Dechambenoit P, Bock H, et al. Twisted polycyclic arenes by intramolecular Scholl reactions of C3-symmetric precursors. Org Chem. 2013;78:2266–2274.
  • Pradhan A, Dechambenoit P, Bock H, et al. Highly twisted arenes by Scholl cyclizations with unexpected regioselectivity. Angew Chem Int Ed. 2011;50:12582–12585.
  • King BT, Kroulík J, Robertson CR, et al. Controlling the Scholl reaction. J Org Chem. 2007;72:2279–2288.
  • Zhai L, Shukla R, Wadumethrige SH. Probing the arenium-ion (protontransfer) versus the cation-radical (electron transfer) mechanism of scholl reaction using DDQ as oxidant. J Org Chem. 2010;75:4748–4760.
  • Wang Z, Dötz F, Enkelmann V, et al. “Double-concave” graphene: permethoxylated hexa-peri-hexabenzocoronene and its cocrystals with hexafluorobenzene and fullerene. Angew Chem Int Ed. 2005;44:1247–1250.
  • Luo J, Xu X, Mao R, et al. Curved polycyclic aromatic molecules that are π-isoelectronic to hexabenzocoronene. J Am Chem Soc. 2012;134:13796–13803.
  • Lu Y, Moore JS. Semi-fused hexaphenyl hexa-peri-hexabenzocoronene: a novel fluorophore from an intramolecular Scholl reaction. Tetrahedron Lett. 2009;50:4071–4077.
  • Gregg DJ, Bothe E, Höfer P, et al. Extending the nitrogen-heterosuperbenzene family: the spectroscopic, redox, and photophysical properties of “half-cyclized” N-1/2HSB and its Ru(II) complex. Inorg Chem. 2005;44:5654–5660.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, revision D.01. Wallingford CT: Gaussian Inc.; 2009.
  • Becke AD. Density-functional thermochemistry III the role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Arslan H, Uribe-Romo FJ, Smitha BJ, et al. Accessing extended and partially fused hexabenzocoronenes using a benzannulation–cyclodehydrogenation approach. Chem Sci. 2013;4:3973–3978.
  • Brédas JL, Beljonne D, Coropceanu V, et al. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev. 2004;104:4971–5004.
  • Chen Z, Lohr A, Saha-Möller CR, et al. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem Soc Rev. 2009;38:564–584.
  • Niimi K, Shinamura S, Osaka I, et al. Dianthra[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DATT): synthesis, characterization, and FET characteristics of new π-extended heteroarene with eight fused aromatic rings. J Am Chem Soc. 2011;133:8732–8739.
  • Saeki A, Koizumi Y, Aida T, et al. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc Chem Res. 2012;45:1193–1202.
  • Clar E, Ironside CT, Zander M. The electronic interaction between benzenoid rings in condensed aromatic hydrocarbons. 1: 12-2: 3-4: 5-6: 7-8: 9-10: 11-hexabenzocoronene, 1: 2-3: 4-5: 6-10: 11-tetrabenzoanthanthrene, and 4: 5-6: 7-11: 12-13: 14-tetrabenzoperopyrene. J Chem Soc. 1959;142–147.
  • Chen TA, Liu RS. Synthesis of large polycyclic aromatic hydrocarbons from Bis(biaryl)acetylenes: large planar PAHs with low π-sextets. Org Lett. 2011;13:4644–4647.
  • Alameddine B, Anju RS, Al-Sagheer F, et al. Tribenzopentaphene derivatives with lateral aromatic groups: the effect of the nature and position of substituents on emission properties. New J Chem. 2016;40:10363–10370.
  • Gayathri HN, Kumar B, Suresh KA, et al. Charge transport in a liquid crystalline triphenylene polymer monolayer at air–solid interface. Phys Chem Chem Phys. 2016;18:12101–12107.
  • Rodler F, Schade B, JäGer CM, et al. Amphiphilic perylene–calix [4] arene hybrids: synthesis and tunable self-assembly. J Am Chem Soc. 2015;137:3308–3317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.