582
Views
15
CrossRef citations to date
0
Altmetric
Invited Article

Influence of head group and chain length of surfactants used for stabilising liquid crystal shells

&
Pages 2319-2328 | Received 26 Jun 2018, Published online: 19 Sep 2018

References

  • Urbanski M, Reyes CG, Noh J, et al. Liquid crystals in micron-scale droplets, shells and fibers. J Phys: Condens Matter. 2017;29(13):133003.
  • Lopez-Leon T, Fernandez-Nieves A. Drops and shells of liquid crystal. Colloid Polym Sci. 2011;289(4):345–359.
  • Noh J, Jampani VSR, Haba O, et al. Sub-second dynamic phototuning of alignment in azodendrimer-doped nematic liquid crystal shells. J Mol Liq. 2018.
  • Tran L, Lavrentovich MO, Durey G, et al. Change in stripes for cholesteric shells via anchoring in moderation. Phys Rev X. 2017;7(4):167.
  • Akita T, Kouno H, Iwai Y, et al. Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points. J Mater Chem C. 2017;5(6):1303–1307.
  • Darmon A, Benzaquen M, Copar S, et al. Topological defects in cholesteric liquid crystal shells. Soft Matter. 2016;12(46):9280–9288.
  • Sec D, Lopez-Leon T, Nobili M, et al. Defect trajectories in nematic shells: role of elastic anisotropy and thickness heterogeneity. Phys Rev E. 2012;86:020705(R).
  • Liang HL, Schymura S, Rudquist P, et al. Nematic-smectic transition under confinement in liquid crystalline colloidal shells. Phys Rev Lett. 2011;106(24):247801.
  • Lopez-Leon T, Fernandez-Nieves A, Nobili M, et al. Nematic-smectic transition in spherical shells. Phys Rev Lett. 2011;106(24):247802.
  • Lopez-Leon T, Koning V, Devaiah KBS, et al. Frustrated nematic order in spherical geometries. Nat Phys. 2011;7:391–394.
  • Fernandez-Nieves A, Vitelli V, Utada A, et al. Novel defect structures in nematic liquid crystal shells. Phys Rev Lett. 2007;99(15):157801.
  • Geng Y, Noh J, Drevensek-Olenik I, et al. Elucidating the fine details of cholesteric liquid crystal shell reflection patterns. Liq Cryst. 2017;44(12–13):1948–1959.
  • Kim JG, Park SY. Photonic spring-like shell templated from cholesteric liquid crystal prepared by microfluidics. Adv Opt Mater. 2017;5(13):1700243.
  • Khan M, Park S. Liquid crystal-based biosensor with backscattering interferometry: a quantitative approach. Biosens Bioelectron. 2017;87:976–983.
  • Geng Y, Noh J, Drevensek-Olenik I, et al. High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication. Sci Rep. 2016;6:26840.
  • Uchida Y, Takanishi Y, Yamamoto J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells. Adv Mater. 2013;25(23):3234–3237.
  • Geng Y, Jang JH, Noh KG, et al. Through the spherical looking-glass: asymmetry enables multicolored internal reflection in cholesteric liquid crystal shells. Adv Opt Mater. 2018;6:1700923.
  • Noh J, Reguengo De Sousa K, Lagerwall JPF. Influence of interface stabilisers and surrounding aqueous phases on nematic liquid crystal shells. Soft Matter. 2016;12(2):367–372.
  • Rosen M. Surfactants and interfacial phenomena. Hoboken, USA: John Wiley & Sons, Inc.; 2004.
  • Davey TW, Ducker WA, Hayman AR, et al. Krafft temperature depression in quaternary ammonium bromide surfactants. Langmuir. 1998;14(12):3210–3213.
  • Islam MM, Rahman MR, Islam MN. Micellization behavior and thermodynamic properties of n-alkyl trimethylammonium bromide surfactants in aqueous media at different temperatures. Int J Sci Eng Res. 2015;6:1508–1516.
  • Mukerjee P, Mysels KJ. Critical micelle concentrations of aqueous surfactant systems. Washington (DC): Wiley; 1971.
  • Utada A, Lorenceau E, Link DR, et al. Monodisperse double emulsions generated from a microcapillary device. Science. 2005;308(5721):537–541.
  • Brake J, Abbott N. An experimental system for imaging the reversible adsorption of amphiphiles at aqueous-liquid crystal interfaces. Langmuir. 2002;18(16):6101–6109.
  • Liang H, Noh J, Zentel R, et al. Tuning the defect configurations in nematic and smectic liquid crystalline shells. Philos Transact A Math Phys Eng Sci. 2013;371(1988):20120258.
  • Liang HL, Enz E, Scalia G, et al. Liquid crystals in novel geometries prepared by microfluidics and electrospinning. Mol Cryst Liq Cryst. 2011;549:69–77.
  • Kronberg B, Holmberg K, Lindman B. Surface chemistry of surfactants and polymers. Hoboken (NJ): Wiley; 2014.
  • Brake J, Mezera A, Abbott N. Effect of surfactant structure on the orientation of liquid crystals at aqueous-liquid crystal interfaces. Langmuir. 2003;19(16):6436–6442.
  • Abbott S. CMC saturation, [ cited 2018 July 30]. Available from: https://www.stevenabbott.co.uk/practical-surfactants/cmcsat.php#app.
  • Abbott S. Surfactant science: principles & practice. Lancaster (PA): Destech Publications; 2017.
  • Honaker L, Lagerwall J, Jampani V. Microfluidic tensiometry technique for the characterization of the interfacial tension between immiscible liquids. Langmuir. 2018;34(7):2403–2409.
  • Noh J, Henx B, Lagerwall JP. Taming liquid crystal self-assembly: the multifaceted response of nematic and smectic shells to polymerization. Adv Mater. 2016;28(46):10170–10174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.