176
Views
5
CrossRef citations to date
0
Altmetric
Invited Article

On the importance of detailed structure in molecular electronics (and why microscopic models cannot see the wood for trees)

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 2086-2096 | Received 22 May 2018, Published online: 18 Sep 2018

References

  • Groves C. Simulating charge transport in organic semiconductors and devices: a review. Rep Prog Phys. 2017 Feb;80:026502.
  • Mesta M, Carvelli M, De Vries RJ, et al. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode. Nat Mater. 2013;12:652–658.
  • Bäassler H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys Status Solidi B. 1993 Jan;175:15–56.
  • Baranovskii SD. Theoretical description of charge transport in disordered organic semiconductors. Phys Status Solidi B. 2014 Feb;251:487–525.
  • Watkins PK, Walker AB, Verschoor GLB. Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. Nano Lett. 2005 Sept;5:1814–1818.
  • Papadopoulos TA, Muccioli L, Athanasopoulos S, et al. Does supramolecular ordering influence exciton transport in conjugated systems? Insight from atomistic simulations. Chem Sci. 2011;2:1025–1032.
  • Nenashev AV, Dvurechenskii AV, Gebhard F, et al. Field dependence of hopping mobility: lattice models against spatial disorder. Phys Rev B. 2017;96:1964.
  • Orlandi S, Muccioli L, Ricci M, et al. Core charge distribution and self assembly of columnar phases: the case of triphenylenes and azatriphenylenes. Chem Cent J. 2007;1: 15–13.
  • Lamarra M, Muccioli L, Orlandi S, et al. Temperature dependence of charge mobility in model discotic liquid crystals. Phys Chem Chem Phys. 2012;14: 5368–8.
  • Bacchiocchi C, Zannoni C. Directional energy transfer in columnar liquid crystals: a computer-simulation study. Phys Rev E. 1998 Aug;58:1–8.
  • Emerson APJ, Luckhurst GR, Whatling SG. Computer simulation studies of anisotropic systems. Mol Phys. 2006 Aug;82:113–124.
  • Marcus RA. On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys. 1956 May;24:966–978.
  • Hockney RW, Eastwood JW. Computer simulation using particles. Bristol, UK: CRC Press; 1988 Jan.
  • Groves C, Kimber RGE, Walker AB. Simulation of loss mechanisms in organic solar cells: a description of the mesoscopic Monte Carlo technique and an evaluation of the first reaction method. J Chem Phys. 2010 Oct;133:144110.
  • Kimber RGE, Wright EN, O’Kane SEJ, et al. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics. Phys Rev B. 2012;86:235206.
  • Mass´E A, Friederich P, Symalla F, et al. Ab initio charge-carrier mobility model for amorphous molecular semiconductors. Phys Rev B. 2016;93:195209.
  • Rühle V, Junghans C, Lukyanov A, et al. Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput. 2009;5:3211–3223.
  • Baumeier B, Kirkpatrick J, Andrienko D. Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys Chem Chem Phys. 2010;12:11103–11113.
  • Lukyanov A, Andrienko D. Extracting nondispersive charge carrier mobilities of organic semiconductors from simulations of small systems. Phys Rev B. 2010 Nov.;82:193202.
  • Rühle V, Lukyanov A, May F, et al. Microscopic simulations of charge transport in disordered organic semiconductors. J Chem Theory Comput. 2011;7:3335–3345.
  • Kordt P, Andrienko D. Modeling of spatially correlated energetic disorder in organic semiconductors. J Chem Theory Comput. 2015 Dec;12:36–40.
  • Poelking C, Andrienko D. Long-range embedding of molecular ions and excitations in a polarizable molecular environment. J Chem Theory Comput. 2016 Aug;12:4516–4523.
  • Van Duijnen PT, Swart M. Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem. 1998 Apr;102:2399–2407.
  • Frisch MJ, Schlegel HB, Scuseria GE, et al. Gaussian 09 revision A.02. 2009.
  • Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys. 1976 Dec;22:403–434.
  • Wilson RJ. Introduction to graph theory. Longman Scientific and Technical; Upper Saddle River, NJ: Longman. 1985.
  • Jackson NE, Chen LX, Ratner MA. Charge transport network dynamics in molecular aggregates. PNAS. 2016 Aug;113:8595–8600.
  • Cottaar J, Coehoorn R, Bobbert PA. Scaling theory for percolative charge transport in molecular semiconductors: correlated versus uncorrelated energetic disorder. Phys Rev B. 2012 June;85:877.
  • Stamatakis M, Vlachos DG. A graph theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. J Chem Phys. 2011 June;134:214115.
  • Noriega R, Rivnay J, Vandewal K, et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater. 2013;12:1038–1044.
  • Kordt P, Speck T, Andrienko D. Finitesize scaling of charge carrier mobility in disordered organic semiconductors. Phys Rev B. 2016 July;94:014208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.