96
Views
3
CrossRef citations to date
0
Altmetric
Invited Article

Phase diagram of a general biaxial nematic model based on density of states computation

&
Pages 2197-2213 | Received 01 Jun 2018, Published online: 16 Oct 2018

References

  • Freiser M. Ordered states of a nematic liquid. Phys Rev Lett. 1970;24:1041–1043.
  • Straley J. Ordered phases of a liquid of biaxial particles. Phys Rev A. 1974;10:1881–1887.
  • Alben R. Phase transitions in a fluid of biaxial particles. Phys Rev Lett. 1973;30:778–781.
  • Luckhurst G, Zannoni C, Nordio P, et al. A molecular field theory for uniaxial nematic liquid crystals formed by non-cylindrically symmetric molecules. Mol Phys. 1975;30:1345–1358.
  • Boccara N, Mejdani R, De Seze L. Sovable model exhibiting a first-order phase transition. J Phys(Paris). 1976;38:149.
  • Gramsbergen E, Longa L, de Jeu WH. Landau theory of the nematic-isotropic phase transition. Phys Rep. 1986;135:195–257.
  • Remler D, Haymet A. Phase transitions in nematic liquid crystals: a mean-field theory of the isotropic, uniaxial, and biaxial phases. J Phys Chem. 1986;90:5426–5430.
  • Mulder B. Isotropic-symmetry-breaking bifurcations in a class of liquid-crystal models. Phys Rev A. 1989;39:360–370.
  • Teixeira PIC, Masters A, Mulder B. Biaxial nematic order in the hard-boomerang fluid. Mol CrystLiq Cryst Sci and Tech Sec A MolCryst Liq Cryst. 1998;323:167–189.
  • Luckhurst G, Romano S. Computer simulation studies of anisotropic systems: ii. uniaxial and biaxial nematics formed by non-cylindrically symmetric molecules. Mol Phys. 1980;40:129–139.
  • Allen MP. Computer simulation of a biaxial liquid crystal. Liq Cryst. 1990;8:499–511.
  • Biscarini F, Chiccoli C, Pasini P, et al. Phase diagram and orientational order in a biaxial lattice model: a Monte Carlo study. Phys Rev Lett. 1995;75:1803–1806.
  • Camp PJ, Allen MP. Phase diagram of the hard biaxial ellipsoid fluid. J Chem Phys. 1997;106:6681–6688.
  • Chiccoli C, Pasini P, Semeria F, et al. A detailed Monte Carlo investigation of the tricritical region of a biaxial liquid crystal system. Intl J Mod Phys C. 1999;10:469–476.
  • Romano S. Computer simulation of a biaxial nematogenic model on a three-dimensional lattice and based on a recently proposed interaction potential. Physica A. 2004;337:505–519.
  • Romano S. Computer simulation study of a biaxial nematogenic lattice model associated with a three-dimensional lattice and involving dispersion interactions. Physica A. 2004;339:511–530.
  • Pasini P, Zannoni C, Zˇumer S Computer simulations of liquid crystals and polymers: proceedings of the NATO advanced research workshop on computational methods for polymers and liquid crystalline polymers, Erice, Italy. 2003 Jul 16–22. Vol. 177. Erice, Italy: Springer Science & Business Media; 2006.
  • Berardi R, Muccioli L, Orlandi S, et al. Computer simulations of biaxial nematics. J Phys. 2008;20(46):463101.
  • Preeti GS, Murthy K, Sastry V, et al. Does the isotropic–biaxial nematic transition always exist? A new topology for the biaxial nematic phase diagram. Soft Matter. 2011;7:11483–11487.
  • Yu LJ, Saupe A. Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures. Phys Rev Lett. 1980;45:1000–1003.
  • Acharya BR, Primak A, Kumar S. Biaxial nematic phase in bent-core thermotropic mesogens. Phys Rev Lett. 2004;92:145506.
  • Madsen LA, Dingemans TJ, Nakata M, et al. Thermotropic biaxial nematic liquid crystals. Phys Rev Lett. 2004;92:145505.
  • Merkel K, Kocot A, Vij JK, et al. Thermotropic biaxial nematic phase in liquid crystalline organo-siloxane tetrapodes. Phys Rev Lett. 2004;93:237801.
  • Figueirinhas JL, Cruz C, Filip D, et al. Deuterium NMR investigation of the biaxial nematic phase in an organosiloxane tetrapode. Phys Rev Lett. 2005;94:107802.
  • Severing K, Saalwa¨Chter K. Biaxial nematic phase in a thermotropic liquid-crystalline side-chain polymer. Phys Rev Lett. 2004;92:125501.
  • Luckhurst GR, Sluckin TJ. Biaxial nematic liquid crystals: theory, simulation and experiment. Sussex, UK: John Wiley & Sons; 2015.
  • Sonnet AM, Virga EG, Durand GE. Dielectric shape dispersion and biaxial transitions in nematic liquid crystals. Phys Rev E. 2003;67:061701.
  • De Matteis G, Virga EG. Tricritical points in biaxial liquid crystal phases. Phys Rev E. 2005;71:061703.
  • Bisi F, Virga EG, Gartland EC, et al. Universal mean-field phase diagram for biaxial nematics obtained from a minimax principle. Phys Rev E. 2006;73:051709.
  • Bisi F, Romano S, Virga EG. Uniaxial rebound at the nematic biaxial transition. Phys Rev E. 2007;75:041705.
  • De Matteis G, Bisi F, Virga EG. Constrained stability for biaxial nematic phases. Cont Mech Thermodyn. 2007;19:1–23.
  • Matteis GD, Romano S. Biaxial and uniaxial phases produced by partly repulsive mesogenic models involving D2h molecular symmetries. Phys Rev E. 2008;78:021702.
  • Bisi F, Luckhurst GR, Virga EG. Dominant biaxial quadrupolar contribution to the nematic potential of mean torque. Phys Rev E. 2008;78:021710.
  • Longa L, Grzybowski P, Romano S, et al. Minimal coupling model of the biaxial nematic phase. Phys Rev E. 2005;71:051714.
  • Lee J. New Monte Carlo algorithm: entropic sampling. Phys Rev Lett. 1993;71:211–214.
  • Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050–2053.
  • Wang F, Landau DP. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64:056101.
  • Jayasri D, Sastry VSS, Murthy KPN. Wang–Landau Monte Carlo simulation of isotropicnematic transition in liquid crystals. Phys Rev E. 2005;72:036702.
  • Zhou C, Schulthess TC, Torbru¨Gge S, et al. Wang–Landau algorithm for continuous models and joint density of states. Phys Rev Lett. 2006;96:120201.
  • Kamala Latha B, Jose R, Murthy KPN, et al. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: entropic sampling study. Phys Rev E (R). 2014;89:050501.
  • Kamala Latha B, Jose R, Murthy KPN, et al. Reexamination of the mean-field phase diagram of biaxial nematic liquid crystals: insights from Monte Carlo studies. Phys Rev E. 2015;92:012505.
  • Kamala Latha B, Murthy KPN, Sastry VSS. Complex free-energy landscapes in biaxial nematic liquid crystals and the role of repulsive interactions: a Wang–Landau study. Phys Rev E. 2017;96:032703.
  • Berg BA. Multicanonical simulations step by step. Comp Phys Commun. 2003;153:397–406.
  • Landau DP, Binder K. A guide to Monte Carlo simulations in statistical physics. New York, USA:  Cambridge university press; 2014.
  • Kendall W, Liang F, Wang JS Markov chain Monte Carlo: innovations and applications. Vol. 7. World Scientific; 2005.
  • Singh S, Chopra M, de Pablo JJ. Density of states–based molecular simulations. Ann Rev Chem Biomol Eng. 2012;3:369–394.
  • Lebwohl P. Pa lebwohl and g. lasher, phys. rev. a 6, 426 (1972). Phys Rev A. 1972;6:426.
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–1092.
  • Landau DP, Wang F. A new approach to Monte Carlo simulations in statistical physics. Braz J Phys. 2004;34(2A):354–362.
  • Seaton DT, Wu¨St T, Landau DP. Collapse transitions in a flexible homopolymer chain: application of the Wang–Landau algorithm. Phys Rev E. 2010;81:011802.
  • Poulain P, Calvo F, Antoine R, et al. Performances of Wang–Landau algorithms for continuous systems. Phys Rev E. 2006;73:056704.
  • Sinha S, Roy SK. Performance of Wang–Landau algorithm in continuous spin models and a case study: modified XY-model. Phys Lett A. 2009;373:308–314.
  • Shell MS, Debenedetti PG, Panagiotopoulos AZ. Generalization of the Wang–Landau method for off-lattice simulations. Phys Rev E. 2002;66:056703.
  • Langfeld K, Lucini B, Rago A, et al. The density of states approach for the simulation of finite density quantum field theories. J Phys. 2015;631:012063.
  • Brown G, Rusanu A, Daene M, et al. Improved methods for calculating thermodynamic properties of magnetic systems using Wang–Landau density of states. J ApplPhys. 2011;109:07E161.
  • Shi G, Wu¨St T, Landau DP. Characterizing folding funnels with replica exchange Wang–Landau simulation of lattice proteins. Phys Rev E. 2016;94:050402.
  • Chan CH, Brown G, Rikvold PA. Macroscopically constrained Wang–Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams. Phys Rev E. 2017;95(5):053302.
  • Vogel T, Li YW, Landau DP. A practical guide to replica-exchange Wang–Landau simulations. J Phys. 2018;1012:012003.
  • Binder K. Critical properties from Monte Carlo coarse graining and renormalization. Phys Rev Lett. 1981;47:693–696.
  • Low RJ. Measuring order and biaxiality. Euro J Phys. 2002;23:111.
  • Newman M, Barkema G. Monte Carlo methods in statistical physics chapter 1–4. New York, NY: Oxford University Press; 1999.
  • Vanakaras AG, Photinos DJ. Thermotropic biaxial nematic liquid crystals: spontaneous or field stabilized? J Chem Phys. 2008;128:154512.
  • Peroukidis SD, Karahaliou PK, Vanakaras AG, et al. Biaxial nematics: symmetries, order domains and field-induced phase transitions. Liq Cryst. 2009;36:727–737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.