335
Views
20
CrossRef citations to date
0
Altmetric
Invited Article

Carrier transport and device applications of the organic semiconductor based on liquid crystalline non-peripheral octaalkyl phthalocyanine

ORCID Icon, , &
Pages 2376-2389 | Received 13 Jul 2018, Published online: 10 Oct 2018

References

  • Sugimoto R, Takeda S, Gu HB, et al. Preparation of soluble polythiophene derivative utilizing transition metal halides as catalysts and their property. Chem Express. 1986;1:635–658.
  • Sato M, Tanaka S, Kaeriyama K. Soluble conducting polythiophenes. J Chem Soc-Chem Commun. 1986;11:873–874.
  • Yoshino K, Nakajima S, Sugimoto R. Fusibility of polythiophene derivatives with substituted long alkyl chain and their properties. Jpn J Appl Phys. 1987;26(6):L1038–L1039.
  • Anthony JE, Brooks JS, Eaton DL, et al. Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc. 2001;123(38):9482–9483.
  • Ebata H, Izawa T, Miyazaki E, et al. Highly soluble [1]benzothieno [3,2-b] benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc. 2007;129(51):15732–15733.
  • O’Neill M, Kelly SM. Ordered materials for organic electronics and photonics. Adv Mater. 2011;23(5):566–584.
  • Shimizu Y, Oikawa K, Nakayama K, et al. Mesophase semiconductors in field effect transistors. J Mater Chem. 2007;17(40):4223.
  • Hanna J, Ohno A, Iino H. Charge carrier transport in liquid crystals. Thin Solid Films. 2014;554:58–63.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36(12):1902–1929.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887.
  • Pisula W, Zorn M, Chang JY, et al. Liquid crystalline ordering and charge transport in semiconducting materials. Macromol Rapid Commun. 2009;30(14):1179–1202.
  • Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst. 2004;31(8):1037–1059.
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35(1):83–109.
  • Gupta RK, Manjuladevi V, Karthik C, et al. Thin films of discotic liquid crystals and their applications. Liq Cryst. 2016;43(13–15):2079–2091.
  • Said SM, Mahmood MS, Daud MN, et al. Structure-electronics relations of discotic liquid crystals from a molecular modelling perspective. Liq Cryst. 2016;43(13–15):2092–2113.
  • Gowda A, Kumar M, Kumar S. Discotic liquid crystals derived from polycyclic aromatic cores: from the smallest benzene to the utmost graphene cores. Liq Cryst. 2016;44(12–13):1990–2017.
  • de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Commun. 2007;20:2000–2015.
  • Piechocki C, Simon J, Skoulios A, et al. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J Am Chem Soc. 1982;104:5245–5247.
  • Engel MK, Bassoul P, Bosio L, et al. Mesomorphic molecular materials - Influence of chain-length on the structural-properties of octa-alkyl substituted phthalocyanines. Liq Cryst. 1993;15(5):709–722.
  • Cook MJ, Daniel MF, Harrison KJ, et al. 1,4,8,11,15,18,22,25-Octa-alkyl phthalocyanines: new discotic liquid crystal materials. J Chem Soc-Chem Commun. 1987;14:1086–1088.
  • Cherodian AS, Davies AN, Richardson RM, et al. Mesogenic behaviour of some 1,4,8,11,15,18,22,25-octa-alkylphthalocyanines. Mol Cryst Liq Cryst. 1991;196:103–114.
  • Swarts JC, Langner EHG, Krokeide-Hove N, et al. Synthesis and electrochemical characterisation of some long chain 1,4,8,11,15,18,22,25-octa-alkylated metal-free and zinc phthalocyanines possessing discotic liquid crystalline properties. J Mater Chem. 2001;11(2):434–443.
  • Weber P, Guillon D, Skoulios A. Hexagonal columnar mesophases from phthalocyanine upright and tilted intracolumnar molecular stacking, herringbone and rotationally disordered columnar packing. Liq Cryst. 1991;9(3):369–382.
  • Cammidge AN, Cook MJ, Haslam SD, et al. Mesomorphic properties of some 1,4,8,11,15,18,22,25-octa-alkoxymethylphthalocyanines. Liq Cryst. 1993;14(6):1847–1862.
  • Adam D, Closs F, Frey T, et al. Transient photoconductivity in a discotic liquid-crystal. Phys Rev Lett. 1993;70(4):457–460.
  • Adam D, Schuhmacher P, Simmerer J, et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature. 1994;371(6493):141–143.
  • Van de Craats AM, Warman JM, Fechtenkötter A, et al. Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv Mater. 1999;11(17):1469–1472.
  • Iino H, Hanna J, Bushby RJ, et al. Very high time-of-flight mobility in the columnar phases of a discotic liquid crystal. Appl Phys Lett. 2005;87(13):132102.
  • Iino H, Takayashiki Y, Hanna J, et al. Fast ambipolar carrier transport and easy homeotropic alignment in a metal-free phthalocyanine derivative. Jpn J Appl Phys. 2005;44(43):L1310–L1312.
  • Schouten PG, Warman JM, Dehaas MP, et al. Radiation-induced conductivity in polymerized and nonpolymerized columnar aggregates of phthalocyanine. J Am Chem Soc. 1992;114(23):9028–9034.
  • Miyake Y, Shiraiwa Y, Okada K, et al. High carrier mobility up to 1.4 cm2.V−1.s−1 in non-peripheral octahexyl phthalocyanine. Appl Phys Express. 2011;4(2):021604.
  • Watanabe K, Watanabe K, Tohnai N, et al. Ambipolar carrier transport properties and molecular packing structure of octahexyl-substituted copper phthalocyanine. Jpn J Appl Phys. 2018;57(4):04FL01.
  • Yoneya M, Makabe T, Miyamoto A, et al. Tilt orientationally disordered hexagonal columnar phase of phthalocyanine discotic liquid crystals. Phys Rev E. 2014;89(6):062505.
  • Yoneya M, Miyamoto A, Shimizu Y, et al. Origin of the high carrier mobilities of nonperipheral octahexyl substituted phthalocyanine. J Phys Chem C. 2015;119(42):23852–23858.
  • Morita S, Zakhidov AA, Yoshino K. Doping effect of buckminsterfullerene in conducting polymer: change of absorption spectrum and quenching of luminescene. Sol State Commun. 1991;82(4):249–252.
  • Sariciftci NS, Smilowitz L, Heeger AJ, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science. 1992;258(5087):1474–1476.
  • Yu G, Gao J, Hummelen JC, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270(5243):1789–1791.
  • Schmidt-Mende L, Fechtenkötter A, Müllen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293(5532):1119–1122.
  • Muller C, Ferenczi TAM, Campoy-Quiles M, et al. Binary organic photovoltaic blends: A simple rationale for optimum compositions. Adv Mater. 2008;20(18):3510.
  • Hori T, Miyake Y, Yamasaki N, et al. Solution processable organic solar cell based on bulk heterojunction utilizing phthalocyanine derivative. Appl Phys Express. 2010;3(10):101602.
  • Hori T, Fukuoka N, Masuda T, et al. Bulk heterojunction organic solar cells utilizing 1,4,8,11,15,18,22,25-octahexylphthalocyanine. Solar Energy Mater Solar Cells. 2011;95(11):3087–3092.
  • Dao QD, Kumada T, Fukui H, et al. Blend ratio dependence of photovoltaic properties in octahexylphthalocyanine-based small molecule solar cell. Jpn J Appl Phys. 2014;53(5):05FZ05.
  • Ohmori M, Fukui H, Dao QD, et al. Annealing effect in bulk heterojunction organic solar cells utilizing liquid crystalline phthalocyanine. Jpn J Appl Phys. 2014;53(5):05FZ02.
  • Fukumura K, Hori T, Masuda T, et al. Solvent effects on solution-processable bulk heterojunction organic solar cells utilizing 1,4,8,11,15,18,22,25-octahexylphthalocyanine. Jpn J Appl Phys. 2013;52(5):05DB02.
  • Dao QD, Hori T, Fukumura K, et al. Effects of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic phthalocyanine. Org electron. 2013;14(10):2628–2634.
  • Dao QD, Fujii A, Ozaki M. Fabrication of tandem solar cells with all-solution processed multilayer structure using non-peripherally substituted octahexyl tetrabenzotriazaporphyrins. Jpn J Appl Phys. 2016;55(3):03DB01.
  • Hori T, Masuda T, Fukuoka N, et al. Non-peripheral octahexylphthalocyanine doping effects in bulk heterojunction polymer solar cells. Org electron. 2012;13(2):335–340.
  • Cammidge AN, Chambrier I, Cook MJ, et al. Phthalocyanine analogues: unexpectedly facile access to non-peripherally substituted octaalkyl tetrabenzotriazaporphyrins, tetrabenzodiazaporphyrins, tetrabenzomonoazaporphyrins and tetrabenzoporphyrins. Chem Eur. J. 2011;17:3136–3146.
  • Mack J, Sosa-Vargas L, Coles SJ, et al. Synthesis, Characterization, MCD spectroscopy, and TD-DFT calculations of copper-metalated nonperipherally substituted octaoctyl derivatives of tetrabenzotriazaporphyrin, cis- and trans- tetrabenzodiazaporphyrin, tetrabenzomonoazaporphyrin, and tetrabenzoporphyrin. Inorg Chem. 2012;51:12820–12833.
  • Fujii A, Itania H, Watanabe K, et al. Improved synthesis of non-peripherally alkyl-substituted tetrabenzotriazaporphyrins. Mol Cryst Liq Cryst. 2017;653:22–26.
  • Dao QD, Watanabe K, Itani H, et al. Octahexyltetrabenzotriazaporphyrin: A discotic liquid crystalline donor for high-performance small-molecule solar cells. Chem Lett. 2014;43:1761–1763.
  • Ghosh AK, Morel DL, Feng T, et al. Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells. J Appl Phys. 1973;45(1):230–236.
  • Tang CW. Two-layer organic photovoltaic cell. Appl Phys Lett. 1986;48(2):183–185.
  • Hiramoto M, Fujiwara H, Yokoyama M. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl Phys Lett. 1991;58(10):1062–1064.
  • Sakai K, Hiramoto M. Efficient organic p-i-n solar cells having very thick codeposited i-layer consisting of highly purified organic semiconductors. Mol Cryst Liq Cryst. 2008;491:284–289.
  • Matsuo Y, Sato Y, Niinomi T, et al. Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl 60 fullerene. J Am Chem Soc. 2009;131(44):16048–16050.
  • Gregg BA, Fox MA, Bard AJ. Photovoltaic effect in symmetrical cells of a liquid crystal porphyrin. J Phys Chem. 1990;94(4):1586–1598.
  • Fukui H, Nakano S, Uno T, et al. Miscibility in binary blends of non-peripheral alkylphthalocyanines and their application for bulk-heterojunction solar cells. Org electron. 2014;15(6):1189–1196.
  • Fujita K, Nakagawa D, Nakano C, et al. Bulk-heterojunction thin-film solar cells utilizing miscible binary donor materials of liquid crystalline phthalocyanine and its analogue. J Phys Conf Ser. 2017;924:012003.
  • Nakagawa D, Nakano C, Ohmori M, et al. Miscibility and carrier transport properties in binary blend system of non-peripherally octa-hexyl-substituted phthalocyanine analogues. Org electron. 2017;44:67–73.
  • Usui T, Nakata Y, Banoukepa1 GDR, et al. Glass-sandwich-type organic solar cells utilizing liquid crystalline phthalocyanine. Appl Phys Express. 2017;10:021602.
  • Nakata Y, Usui T, Nishikawa Y, et al. Sandwich-cell-type bulk-heterojunction organic solar cells utilizing liquid crystalline phthalocyanine. Jpn J Appl Phys. 2018;57(3):03EJ03.
  • Ohmori M, Nishikawa Y, Fujii A, et al. Homeotropic alignment of non-peripheral octahexyl phthalocyanine in thin films and its photovoltaic properties. Jpn J Appl Phys. 2018;57(8S3):08RE02.
  • Pouzet E, Cupere VD, Heintz C, et al. Homeotropic alignment of a discotic liquid crystal induced by a sacrificial layer. J Phys Chem C. 2009;113(32):14398–14406.
  • Ohmori M, Nakano C, Higashi T, et al. Single crystal growth and X-ray structure analysis of non-peripheral octahexyl phthalocyanine. J Cryst Growth. 2016;445:9–14.
  • Ohmori M, Nakano C, Fujii A, et al. Selective crystal growth of polymorphs and crystal-to-crystal thermal phase transition of non-peripherally alkyl-substituted phthalocyanine and tetrabenzotriazaporphyrin. J Cryst Growth. 2017;468:804–809.
  • Yoneya M, Miyamoto A, Shimizu Y, et al. Characterization of crystal polymorphs of the organic semiconductor non-peripheral octa-hexyl phthalocyanine. Jpn J Appl Phys. 2017;56(8):081601.
  • Ohmori M, Uno T, Nakatani M, et al. Crystal structure analysis in solution-processed uniaxially oriented polycrystalline thin film of non-peripheral octahexyl phthalocyanine by grazing incidence wide-angle x-ray scattering techniques. Appl Phys Lett. 2016;9(15):153302.
  • Ohmori M, Nakatani M, Kajii H, et al. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure. Jpn J Appl Phys. 2018;57(3):03EH10.
  • Ramananarivo MF, Higashi T, Ohmori M, et al. Uniaxial crystal growth in thin film by utilizing supercooled state of mesogenic phthalocyanine. Appl Phys Express. 2016;9(6):061601.
  • Higashi T, Ohmori M, Ramananarivo MF, et al. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor. APL Mater. 2015;3(12):126107.
  • Anzai Y, Higashi T, Kajii H, et al. Single-crystalline thin-film growth via solution-mediated polymorphic transformation of octahexyl-substituted phthalocyanine and its optical anisotropy. Org electron. 2018;60:16–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.