335
Views
16
CrossRef citations to date
0
Altmetric
Article

The novel rufigallol-based liquid crystals with cholesterol units: synthesis, mesomorphic and photophysical properties

, , , &
Pages 787-796 | Received 18 Jul 2018, Accepted 26 Sep 2018, Published online: 09 Oct 2018

References

  • Kumar S. in Handbook of Liquid Crystals. Vol. 4, ed, Goodby JW, Wiley VCH press, Weinheim, Germany. 2014. p. 467–520.
  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–1241.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: A new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • Kumar S. Chemistry of discotic liquid crystals: from monomers to polymers. London, New York: CRC press; 2010.
  • Pal SK, Setia S, Avinash BS, et al. Triphenylene-based discotic liquid crystals: recent advances. Liq Cryst. 2013;40:1769–1816.
  • Yang FF, Guo HY, Vicens J. Macrocycl mini-review: calixarene liquid crystals. J Incl Phenom Macrocycl Chem. 2014;80:177–186.
  • Fleischmann EK, Zentel R. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew Chem Int Ed. 2013;52:8810–8827.
  • Yang FF, Guo HY,Xie JW, et al. Synthesis of calixarene-linked discotic triphenylene. Euro J Org Chem. 2011;26:5141-5145.
  • Fang XT, Guo HY, Lin JR, et al. Synthesis, mesomorphism and fluorescence of triphenylene-Bodipy dyads. Tetrahedron Lett. 2016;57:4939–4943.
  • Yang FF, Zhang YM, Guo HY, et al. Novel supramolecular liquid crystal: synthesis of cyclodextrin-triphenylene column liquid crystal based on click chemistry. Tetrahedron Lett. 2013;54:4953–4956.
  • Yang FF, Yuan J, Li CC, et al. Novel triphenylene derivatives with acylthiosemicarbazide group: studies the influence of multiple H-bonding on mesomorphic properties. Liq Cryst. 2014;41:137–143.
  • Guo HY, Lin LB, Qiu JB, et al. Phenylacrylonitrile-bridging triphenylene dimers: the columnar liquid crystals with high fluorescence in both solid state and solution. RSC Adv. 2017;7:53316–53321.
  • Chen SB, Guo HY, Geng XT, et al. Bowl liquid crystal based on cyclotriveratrylene derivatives with multiple triphenylene units: the influences of the numbers of triphenylene units on mesomorphic behaviours. J Mol Liq. 2018;252:145–150.
  • Hong BQ, Yang FF, Guo HY, et al. Synthesis, complexation, and mesomorphism of novel calixarene-linked discotic triphenylene based on click chemistry. Tetrahedron Lett. 2014;55:252–255.
  • Kawano S, Kato M, Soumiya S, et al. Columnar liquid crystals from a giant macrocycle mesogen. Angew Chem Int Ed. 2018;57:167–171.
  • Nakamura H, Sugiyama K, Ohta K, et al. Phthalocyanine-based discotic liquid crystals switching from a molten alkyl chain type to a flying-seed-like type. J Mater Chem C. 2017;5:7297–7306.
  • Watarai A, Ohta K, Yasutake M. Discotic liquid crystals of transition metal complexes 52: synthesis and homeotropic alignment of liquid crystalline phthalocyanine-fullerene dyad bridged by vanillin. J Porphyr Phthalocya. 2016;20:1444–1456.
  • Zhu MG, Zhuo YZ, Guo HY, et al. Enhanced fluorescence in both solution and solid state for perylene liquid crystals with six peripheral alkyl substituents on 1,6,7,12-bay positions and imides positions. J Lumin. 2018;194:264–270.
  • Guo HY, Zhu MG, Wang ZS, et al. Triphenylene-perylene-triphenylene triads with bay-substituents: synthesis, mesomorphism, and electron transfer properties. Tetrahedron Lett. 2016;57:4191–4195.
  • Chen SC, Hong BL, Guo HY, et al. The mesomorphic and photophysical properties of perylene liquid crystals with different bay-rigid spacers. Liq Cryst. 2018;45:793–800.
  • Zhu MG, Guo HY, Yang FF, et al. Novel perylene liquid crystals: investigation of the influence of bay-substituents on mesomorphism and photophysical property. Dye Pigm. 2016;133:387–394.
  • Zhu MG, Guo HY, Yang FF, et al. Novel room-temperature perylene liquid crystals: synthesis of 1,7-dibrominated cholesterol-perylene bisimides with different ester-bridging chains and their mesomorphic properties. Liq Cryst. 2016;43:1875–1883.
  • Attard GS, Douglass AG, Imrie CT, et al. Liquid-crystalline cyclic trimers derived from benzene-1,3,5-tricarboxylic acid. Liq Cryst. 1992;11:779–784.
  • Imrie CT, Lu ZB, Picken SJ, et al. Oligomeric rod-disc nematic liquid crystals. Chem Commun. 2007;12:1245–1247.
  • Zhu MG, Zhuo YZ, Cai KC, et al. Novel fluorescent perylene liquid crystal with diphenylacrylonitrile groups: observation of a large pseudo stokes shift based on AIE and FRET effects. Dye Pigm. 2017;147:343–349.
  • Murschell AE, Sutherland TC. Anthraquinone-based discotic liquid crystals. Langmuir. 2010;26:12859–12866.
  • Setia S, Sidiq S, Pal SK. Microwave-assisted synthesis of novel oligomeric rod-disc hybrids. Tetrahedron Lett. 2012;53:6446–6450.
  • Bisoyi HK, Kumar S. Microwave-assisted synthesis of rufigallol and its novel room-temperature liquid crystalline derivatives. Tetrahedron Lett. 2007;48:4399–4402.
  • Sisoyi HK, Kumar S. Room-temperature electron-deficient discotic liquid crystals: facile synthesis and mesophase characterization. New J Chem. 2008;32:1974–1980.
  • Dhar R, Kumar S, Gupta M, et al. Thermodynamic, optical and dielectric studies of the homologous members of columnar discotic compound Rufigallol hexa-n-alkoxylates. J Mol Liq. 2008;141:19–24.
  • Kumar S. Rufigallol-based self-assembled supramolecular architectures. Phase Transitions. 2008;81:113–128.
  • Setia S, Soni A, Gupta M, et al. Microwave-assisted synthesis of novel mixed tail rufigallol derivatives. Liq Cryst. 2013;40:1364–1372.
  • Pal SK, Kumar S. Synthesis and characterisation of novel alkoxycyanobiphenyl-substituted rufigallols. Liq Cryst. 2013;40:281–292.
  • Thomas R, Yoshida Y, Akasaka T, et al. Influence of a change in helical twisting power of photoresponsive chiral dopants on potational Mmanipulation of micro-objects on the surface of chiral nematic liquid crystalline films. Chem Eur J. 2012;18:12337–12348.
  • Kausar A, Nagano H, Kuwahara Y, et al. Photocontrolled manipulation of a microscale object: a rotational or translational mechanism. Chem Eur J. 2011;17:508–515.
  • Muraoka T, Kinbara K, Aida T. Mechanical twisting of a guest by a photoresponsive host. Nature. 2006;440:512–515.
  • Hiremath US, Nair GG, Rao DSS. Supramolecular non-symmetric dimers derived from cholesterol: synthesis and phase transitional properties. Liq Cryst. 2016;43:711–728.
  • Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater. 2012;24:1926–1945.
  • Yeap GY, Balamurugan S, Srinivasan MV, et al. Synthesis and comparative study on phase transition behavior of triazole-cored liquid crystals armed with cholesterol and double or triple aromatic rings systems. New J Chem. 2013;37:1906–1912.
  • Tandel RC, Patel NK. Synthesis and mesomorphic properties of chiral nematic liquid crystals based on cholesterol. Liq Cryst. 2014;41:514–521.
  • As A, Us H, Dss R, et al. Non-conventional liquid crystals: synthesis and mesomorphism of non-symmetric trimers and tetramers derived from cholesterol. Liq Cryst. 2011;38:1563–1589.
  • Gupta M, Pal SK. The first examples of room temperature liquid crystal dimers based on cholesterol and pentaalkynylbenzene. Liq Cryst. 2015;42:1250–1256.
  • He XM, Lin JB, Kan WH, et al. Synthesis and properties of cholesteric click-phospholes. Org Lett. 2014;16:1366–1369.
  • Xiong J, Lin XR, Guo HY, et al. Liquid crystalline oligomers derived from cholesterol: synthesis and columnar mesomorphism. Liq Cryst. 2018;45:362–369.
  • Han CY, Guo HY, Lai JB, et al. Calix[4]resorcinarene-cholesterol columnar liquid crystals: synthesis, mesomorphism and the influence of spacers on liquid crystalline behaviors. J Mol Liq. 2017;231:220–224.
  • Hou RB, Zhong KL, Huang ZG, et al. From smectic to columnar phase of polypedal liquid crystals based on tetrathiafulvalene/1,3-dithiol-2-thione and cholesterol. Tetrahedron. 2001;67:1238–1244.
  • Guo HY, Yang FF, Liu WW, et al. Novel supramolecular liquid crystals: synthesis and mesomorphic properties of calix[4]arene-cholesterol derivatives. Tetrahedron Lett. 2015;56:866–870.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.