281
Views
1
CrossRef citations to date
0
Altmetric
Article

A general design method for tunable microstrip devices at microwave frequency based on liquid crystal technology

, , , ORCID Icon, & ORCID Icon
Pages 846-856 | Received 01 Aug 2018, Accepted 26 Sep 2018, Published online: 08 Feb 2019

References

  • Yaghmaee P, Karabey OH, Bates B, et al. Electrically tuned microwave devices using liquid crystal technology. Int J Antenn Propag. 2013; 1–10.
  • Zhang XY, Chan CH, Xue Q, et al. RF tunable bandstop filters with constant bandwidth based on a doublet configuration. IEEE Trans Ind Electron. 2012;59(2):1257–1265.
  • Naglich EJ, Lee J, Peroulis D, et al. Switchless tunable bandstop-to-all-pass reconfigurable filter. IEEE Trans Microw Theory Technol. 2012;60(5):1258–1265.
  • Li JS, Liu H, Zhang L. Compact and tunable-multichannel terahertz wave filter. IEEE Trans THz Sci Technol. 2015;5(4):551–555.
  • Scarbrough D, Psychogiou D, Peroulis D, et al. Low-loss, broadly-tunable cavity filter operating at UHF frequencies. Microw. Symp. (IMS), IEEE MTT-S Int. Phoenix, AZ, USA; 2015. p. 1–4.
  • Nath J, Ghosh D, Maria JP, et al. An electronically tunable microstrip bandpass filter using thin-film Barium-Strontium-Titanate (BST) varactors. IEEE Trans Microw Theory Techn. 2005;53(9):2707–2712.
  • Schuster C, Wiens A, Schmidt F, et al. Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth. IEEE Trans Microw Theory Techn. 2017;65(11):4572–4583.
  • Chaudhary G, Jeong Y, Lim J. Dual-band bandpass filter with independently tunable center frequencies and bandwidths. IEEE Trans Microw Theory Techn. 2013;61(1):107–116.
  • Fouladi S, Huang F, Yan WD, et al. High-Q narrowband tunable combline bandpass filters using MEMS capacitor banks and piezomotors. IEEE Trans Microw Theory Techn. 2013;61(1):393–402.
  • Jiang H, Lacroix B, Choi K, et al. Ka and U band tunable bandpass filters using ferroelectric capacitors. IEEE Trans Microw Theory Techn. 2011;59(12):3068–3075.
  • Cheng C, Rebeiz GM. High-Q 4–6-GHz suspended stripline RF MEMS tunable filter with bandwidth control. IEEE Trans Microw Theory Techn. 2011;59(10):2469–2476.
  • Chiou YC, Rebeiz GM. A tunable three-pole 1.5–2.2-GHz bandpass filter with bandwidth and transmission zero control. IEEE Trans Microw Theory Techn. 2011;59(11):2872–2878.
  • Anand A, Small J, Peroulis D, et al. Theory and design of octave tunable filters with lumped tuning elements. IEEE Trans Microw Theory Techn. 2013;61(12):4353–4364.
  • Li C, Bian Y, Li G, et al. A tunable high temperature superconducting bandpass filter realized using semiconductor varactors. IEEE Trans Appl Supercond. 2014;24(5):1–5.
  • Wang X, Bao P, Jackson TJ, et al. Tunable microwave filters based on discrete ferroelectric and semiconductor varactors. IET Microw Antennas Propag. 2011;5(7):776–782.
  • Liu X Tunable RF and microwave filters. IEEE 16th Annu. Wireless and Microw. Techno. Conf. 2015; Cocoa Beach, FL, USA. p. 1–5.
  • Yazdanpanahi M, Mirshekar-Syahkal D Investigation of coupling based on liquid crystal in two end-coupled microstrip resonators. In Telecommunications (IST), 2010 5th International Symposium on IEEE. 2010; 324–327.
  • Yazdanpanahi M, Bulja S, Mirshekar-Syahkal D, et al. Measurement of dielectric constants of nematic liquid crystals at mm-wave frequencies using patch resonator. IEEE Trans Instrum Meas. 2010;59(12):3079–3085.
  • Goelden F, Gaebler A, Karabey O, et al. Tunable band-pass filter based on liquid crystal. IEEE German Microw. Conf. 2010; Berlin, Germany. p. 98–101.
  • Shen M, Huang Y, Shao Z A tunable microstrip dual-mode bandpass filter based on liquid crystal technology. ICCPIEEE Int. Conf. 2015; Guilin, China. p. 164–466.
  • Cai L, Xu H, Pivnenko M A tunable wideband microstrip bandstop filter based on liquid crystal materials. ICCP IEEE Int. Conf. 2014; Beijing, China. p. 656–657.
  • Jiang D, Chen H, Luo W Tunable microwave filter using highly anisotropic liquid crystals. ICCP in IEEE Int. Conf. 2015; Guilin, China. p. 565–568.
  • Dai JW, Peng HL, Zhang YP, et al. A beam-steering array using liquid crystal phase shifter. Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) in IEEE MTT-S Int. Microw. Workshop Series, 2016; Chengdu, China. p. 1–3.
  • Zhao Y, Huang C, Qing AY, et al. A frequency and pattern reconfigurable antenna array based on liquid crystal technology. IEEE Photon J. 2017;9:3: 1–7.
  • Karabey OH, Gaebler A, Strunck S, et al. A 2-D electronically steered phased-array antenna with 2*2 elements in LC display technology. IEEE Trans Microw Theory Techn. 2012;60(5):1297–1306.
  • Hu W, Dickie R, Cahill R, et al. Liquid crystal tunable mm wave frequency selective surface. IEEE Microw Wireless Compon Lett. 2007;17(9):667–669.
  • Torrecilla J, Urruchi V, Sánchez-Pena JM, et al. Improving the pass-band return loss in liquid crystal dual-mode bandpass filters by microstrip patch reshaping. Materials. 2015;7(6):4524–4535.
  • Bernigaud JF, Martin N, Laurent P, et al. Liquid crystal tunable filter based on DBR topology. Proc. of the 36th Enropean Microw. Conf. 2006; Manchester, UK. p. 368–371.
  • Advanced Design System (ADS). Santa Clara: Keysight Technologies. 2012. Accessed on June 02, 2018. https://www.keysight.com/en/pc-1297113/advanced-design-system-ads?cc=GB⌈eng
  • CST Mirowave Studio. Paris: CST Computer Simulation Technology AG. 2017. Accessed on June 02, 2018. www.cst.com
  • Yaghmaee P, Withayachumnankul W, Horestani AK, et al. Tunable electric-LC resonators using liquid crystal. Antennas and Propag. Soc. Int. Symp. 2013; Orlando, FL, USA; 382–383.
  • Hong JSG, Lancaster MJ. Microstrip filters for RF/microwave applications. New York (NY): John Wiley & Sons; 2004.
  • Bahl IJ. Lumped elements for RF and microwave circuits. Norwoood (MA): Artech house; 2003.
  • Gevorgian S, Berg H. Line capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers. 2001; 1–4.
  • Gupta KC, Garg R, Bahl I, et al. Microstrip lines and slotlines. Norwood (MA): Artech house; 1996.
  • James R, Fernandez FA, Day SE, et al. Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications. IEEE Trans Microw Theory Technol. 2009;57(12):3293–3297.
  • Chandrasekhar S. Liquid crystals. Cambridge (UK): Cambridge University Press; 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.