382
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Design of liquid crystals with ‘de Vries-like’ properties: the effect of an ethynyl spacer in the core structure

, , , , , , , & show all
Pages 896-904 | Received 07 Sep 2018, Accepted 12 Oct 2018, Published online: 30 Oct 2018

References

  • Tschierske C. Non-conventional liquid crystals–the importance of micro-segregation for self-organisation. J Mater Chem. 1998;8(7):1485–1508.
  • Tschierske C. Microsegregation: from basic concepts to complexity in liqud crystal self-assembly. Isr J Chem. 2012;52:935–959.
  • Clark NA, Lagerwall ST. Submicrosecond bistable electro-optic switching in liquid crystals. Appl Phys Lett. 1980;36(11):899–901.
  • Clark NA, Lagerwall ST., et al. Ferroelectric Liquid Crystals. In: Goodby JW, Blinc R, Clark NA, editors. Ferroelectric liquid crystals: principles, properties and applications. Philadelphia: Gordon and Breach; 1991. p. 147.
  • Giesselmann F, Zugenmaier P, Dierking I, et al. SmA*-SmC* transition in a ferroelectric liquid crystal without smectic layer shrinkage. Phys Rev E. 1999;60:598–602.
  • Rieker TP, Clark NA, Smith GS, et al. Chevron local layer structure in surface stabilized ferroelectric smectic-C cells. Phys Rev Lett. 1987;59:2658–2661.
  • Lagerwall JPF, Giesselmann F. Current topics in smectic liquid crystal research. ChemPhysChem. 2006;7:20–45.
  • de Vries A. The description of the smectic A and C phases and the smectic A-C phase transition of TCOOB with a diffuse-cone model. J Chem Phys. 1979;71:25–31.
  • Lagerwall ST, Rudquist P, Giesselmann F. The orientational order in so-called de Vries materials. Mol Cryst Liq Cryst. 2009;510:148–157.
  • Gorkunov MV, Osipov MA, Lagerwall JPF, et al. Order-disorder molecular model of the smectic A-smectic C phase transition in materials with conventional and anomalously weak layer contraction. Phys Rev E. 2007;76:051706.
  • Saunders K, Hernandez D, Pearson S, et al. Disordering to order: de Vries behavior from a Landau theory for smectic phases. Phys Rev Lett. 2007;98:197801.
  • Yoon H, Agra-Kooijman DM, Ayub K, et al. Direct observation of diffuse cone behavior in de Vries smectic-A and -C phases of organosiloxane mesogens. Phys Rev Lett. 2011;106:087801.
  • Nonnenmacher D, Jagiella S, Song Q, et al. Orientational fluctuations near the smectic-A to smectic-C phase transition in two ‘de Vries’-type liquid crystals. ChemPhysChem. 2013;14:2990–2995.
  • Schubert CPJ, Bogner A, Porada JH, et al. Design of liquid crystals with ‘de Vries-like’ properties: carbosilane-terminated 5-phenylpyrimidine mesogens for chevron-free FLC formulations. J Mater Chem C. 2014;2:4581–4589.
  • Mulligan KM, Bogner A, Song Q, et al. Design of liquid crystals with ‘de Vries-like’ properties: the effect of carbosilane nanosegregation in 5-phenyl-1,3,4-thiadiazole mesogens. J Mater Chem C. 2014;2:8270–8276.
  • Jenz F, Osipov MA, Jagiella S, et al. Orientational distribution functions and order parameters in “de Vries”-type smectics: A simulation study. J Chem Phys. 2016;145:134901.
  • Sreenilayam SP, Rodrigez-Lojo D, Panov VP, et al. Design and investigation of de Vries liquid crystals based on 5-phenylpyrimidine and (R,R)-2,3-eopxyhexoxy backbone. Phys Rev E. 2017;96:042701.
  • Sreenilayam SP, Rodrigez-Lojo D, Agra-Kooijman DM, et al. de Vries liquid crystals on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone. Phys Rev Mater. 2018;2:025603.
  • Merkel K, Kocot A, Vij JK, et al. Anomalous temperature dependence of layer spacing of de Vries liquid crystals: compensation model. Appl Phys Lett. 2016;108:243301.
  • Gradisek A, Domenici V, Apih T, et al. 1H NMR relaxometric study of molecular dynamics in a “de Vries” liquid crystal. J Phys Chem B. 2016;120:4706–4714.
  • Takanishi Y, Ouchi Y, Takezoe H, et al. Spontaneous formation of quasi-bookshelf layer structure in new ferroelectric liquid crystals derived from a naphthalene ring. Jpn J Appl Phys. 1990;2:L984–L986.
  • Schubert CPJ, Müller C, Bogner A, et al. Design of liquid crystals with ‘de Vries-like’ properties: structural variants of carbosilane-terminated 5-phenylpyrimidine mesogens. Soft Matter. 2017;13:3307–3313.
  • Kratky O. Deformation mechanisms of fibrous materials. I Kolloid Z. 1933;64:0213–0222.
  • Hermans JJ, Hermans PH, Vermaas D, et al. Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Rec Trav Chim Pays-Bas. 1946;65:427–447.
  • Lovell R, Mitchell GR. Molecular orientational distribution derived from an arbritary reflection. Acta Cryst. 1981;A37:135–137.
  • Burger C, Ruland W. Evaluation of equatorial orientation distribution. J Appl Crys. 2006;39:889–891.
  • Agra-Kooijman DM, Fisch MR, Kumar S. The integrals determining orientational order in liquid crystals by x-ray diffraction revisited. Liq Cryst. 2018;45:680–686.
  • Sims MT, Abbott LC, Richardson RM, et al. Considerations in the determination of orientational order parameters from X-ray scattering experiments. Liq Cryst. 2018. DOI:10.1080/02678292.2018.1455227

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.