580
Views
12
CrossRef citations to date
0
Altmetric
Article

Low threshold polymerised cholesteric liquid crystal film lasers with red, green and blue colour

, , , &
Pages 970-976 | Received 07 Oct 2018, Accepted 28 Oct 2018, Published online: 07 Nov 2018

References

  • Ilchishin IP, Tikhonov EA, Tishchenko VG, et al. Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 1980;32(1):24–27.
  • Goldberg LS, Schnur JM, inventors. The United States of America as represented by the secretary of the navy, assignee. Tunable internal-feedback liquid crystal-dye laser. United States patent US 3,771,065. 1973 Nov 6.
  • Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater. 2012;24(47):6260–6276.
  • Lin JH, Chen PY, Wu JJ. Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser. Opt Express. 2014;22(8):9932–9941.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photon. 2010;4(10):676–685.
  • Dowling JP, Scalora M, Bloemer MJ, et al. The photonic band edge laser: a new approach to gain enhancement. J Appl Phys. 1994;75(4):1896–1899.
  • Strangi G, Barna V, Caputo R, et al. Color-tunable organic microcavity laser array using distributed feedback. Phys Rev Lett. 2005;94(6):063903.
  • Duarte FJ. Solid-state multiple-prism grating dye-laser oscillators. Appl Opt. 1994;33(18):3857–3860.
  • Gromov DA, Dyumaev KM, Manenkov AA, et al. Efficient plastic-host dye lasers. J Opt Soc Am B. 1985;2(7):1028–1031.
  • Dadalyan T, Ninoyan Z, Nys I, et al. Light-induced multi-wavelength lasing in dye-doped chiral nematic liquid crystals due to strong pumping illumination. Liq Cryst. 2018;45(9):1272–1278.
  • Etxebarria J, Ortega J, Folcia CL. Enhancement of the optical absorption in cholesteric liquid crystals due to photonic effects: an experimental study. Liq Cryst. 2018;45(1):122–128.
  • Song MH, Park B, Nishimura S, et al. Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device. Adv Funct Mater. 2006;16(14):1793–1798.
  • Funamoto K, Ozaki M, Yoshino K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal. Jpn J Appl Phys. 2003;42:1523–1525.
  • Finkelmann H, Kim ST, Muæoz A, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13(14):1069–1072.
  • Matsui T, Ozaki R, Funamoto K, et al. Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal. Appl Phys Lett. 2002;81(20):3741–3743.
  • Humar M, Muševič I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express. 2010;18(26):26995–27003.
  • Li Y, Luo D, Chen R. Microcavity laser based on cholesteric liquid crystal doped with reactive mesogen. IEEE Photon J. 2016;8(4):1503106.
  • Li Y, Luo D. Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen. Opt Mater Express. 2016;6(2):691–696.
  • Guo J, Wu H, Chen F, et al. Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure. J Mater Chem. 2010;20:4094–4102.
  • Lin JD, Chu CL, Lin HY, et al. Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples. Opt Mater Express. 2015;5(6):1419–1430.
  • Lin JD, Lin HL, Lin HY, et al. Widely tunable photonic bandgap and lasing emission in enantiomorphic cholesteric liquid crystal templates. J Mater Chem C. 2017;5:3222–3228.
  • Etxebarria J, Ortega J, Folcia CL, et al. Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers. Opt Lett. 2015;40(7):1262–1265.
  • Tran B, Baur T. Reactive mesogen retarders and applications. Proc SPIE. 2012;8489:84890B.
  • McConney ME, Tondiglia VP, Hurtubise JM, et al. Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization. Chem Commun. 2011;47:505–507.
  • Mitov M, Dessaud N. Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity. Liq Cryst. 2007;34(2):183–193.
  • Dai Q, Li Y, Wu J, et al. Wide-range position-tuning lasers in cholesteric liquid crystal. Chin Phys Lett. 2013;30(8):084206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.