257
Views
11
CrossRef citations to date
0
Altmetric
Article

A blue-phase liquid crystal lens array based on dual square ring-patterned electrodes

, , , , , & show all
Pages 1266-1272 | Received 05 Oct 2018, Accepted 13 Nov 2018, Published online: 29 Nov 2018

References

  • Sato S. Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys. 1979;18:1679–1684.
  • Nose T, Masuda S, Sato S. Effects of low polymer content in a liquid-crystal microlens. Opt Lett. 1997;22:351–353.
  • Hiddink MGH, Zwart STD, Willemsen OH, et al. locally switchable 3D displays. Soc Inf Disp Tech Dig. 2006;20(1):1142–1145.
  • Ferstl M, Frisch AM. Static and dynamic Fresnel zone lenses for optical interconnections. J Mod Opt. 1996;43:1451–1462.
  • Mcmanamon PF, Dorschner TA, Corkum DL, et al. Optical phased array technology. Proc IEEE. 1996;84:268–298.
  • Riza NA, Dejule MC. Three-terminal adaptive nematic liquid-crystal lens device. Opt Lett. 1994;19:1013–1015.
  • Lee YJ, Baek JH, Kim Y, et al. Polarizer-free liquid crystal display with electrically switchable microlens array. Opt Express. 2013;21:129–134.
  • Lin HC, Chen MS, Lin YH. A review of electrically tunable focusing liquid crystal lenses. Trans Electr Electron Mater. 2011;12:234–240.
  • Nose T, Masuda S, Sato S. Optical properties of a liquid crystal microlens with a symmetric electrode structure. Jpn J Appl Phys. 1991;30:L2110–L2112.
  • Li Y, Wu ST. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt Express. 2011;19:8045–8050.
  • Cui JP, Fan HX, Wang QH. A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure. Liq Cryst. 2017;44:643–647.
  • Chu F, Dou H, Li GP, et al. A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes. Liq Cryst. 2018;45:715–720.
  • Kim SU, Na JH, Kim C, et al. Design and fabrication of liquid crystal-based lenses. Liq Cryst. 2017;44:2121–2132.
  • Naumov AF, Loktev MY, Guralnik IR, et al. Liquid-crystal adaptive lenses with modal control. Opt Lett. 1998;23:992–994.
  • Chen KM, Gauza S, Xianyu HQ, et al. Submillisecond gray-level response time of a polymerstabilized blue-phase liquid crystal. J Display Technol. 2010;6:49–51.
  • Xu D, Peng F, Wu ST. Polymer-stabilized blue phase liquid crystals. Opt Mater Express. 2011;1:1527–1535.
  • Dou H, Chu F, Song YL, et al. A multifunctional blue phase liquid crystal lens based on multi-electrode structure. Liq Cryst. 2018;45:491–497.
  • Huang YG, Chen HW, Tan GJ, et al. Optimized blue-phase liquid crystal for field-sequential-color displays. Opt Mater Express. 2017;7:641–650.
  • Hung CC, Hsieh HY, Lin YT, et al. Novel four‐transistor pixel circuit using source‐follower structure for field‐sequential‐color blue‐phase liquid crystal displays. Soc Inf Disp Tech Dig. 2017;48:482–485.
  • Lin YH, Chen HS, Lin HC, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:113505.
  • Lin CH, Wang YY, Hsieh CW. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals. Opt Lett. 2011;36:502–504.
  • Li Y, Liu YF, Li Q, et al. Polarization independent blue phase liquid crystal cylindrical lens with a resistive film. Appl Opt. 2012;51:2568–2572.
  • Rong N, Li Y, Li X, et al. Polymer-stabilized blue-phase liquid crystal Fresnel lens cured with patterned light using a spatial light modulator. J Display Technol. 2016;12:1008–1012.
  • Lee CT, Li Y, Lin HY, et al. Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal. Opt Express. 2011;19:17402–17407.
  • Huang C, Zhang Q. Enhanced dielectric and electromechanical response in high dielectric constant all-polymer percolative composites. Adv Funct Mater. 2004;14:501–506.
  • Hsu CJ, Liao CH, Chen BL, et al. Polarization-insensitive liquid crystal microlens array with dual focal modes. Opt Express. 2014;22:25925–25930.
  • Zhao XL, Evans JRG, Edirisinghe MJ. Direct ink-jet printing of vertical walls. J Am Ceram Soc. 2002;85:2113–2115.
  • Liu JL, Ma HM, Sun YB. Blue-phase liquid crystal display with high dielectric material. Liq Cryst. 2016;43:1748–1752.
  • Yan J, Cheng HC, Gauza S, et al. Extended Kerr effect of polymer-stabilized blue-phase liquid crystals. Appl Phys Lett. 2010;96:071105.
  • Fan YH, Ren HW, Liang X, et al. Liquid crystal microlens arrays with switchable positive and negative focal lengths. J Disp Technol. 2005;1:151–156.
  • Rao LH, Yan J, Wu ST, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2011;98:081109.
  • Peng FL, Lee YH, Luo ZY, et al. Low voltage blue phase liquid crystal for spatial light modulators. Opt Lett. 2015;40:5097–5100.
  • Lin SH, Huang LS, Lin CH, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals. Opt Express. 2014;22:925–930.
  • Dou H, Chu F, Wang L, et al. A polarisation-free blue phase liquid crystal lens with enhanced tunable focal length range. Liq Cryst. 2018. DOI:10.1080/02678292.2018.1542748

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.