1,250
Views
30
CrossRef citations to date
0
Altmetric
Article

Photocontrol of helix handedness in curled liquid crystal elastomers

, , , ORCID Icon & ORCID Icon
Pages 1231-1240 | Received 18 Oct 2018, Accepted 13 Nov 2018, Published online: 27 Nov 2018

References

  • Armon S, Efrati E, Kupferman R, et al. Geometry and mechanics in the opening of chiral seed pods. Science. 2011;333:1726–1730.
  • Koumura N, Zijlstra RW, van Delden RA, et al. Light-driven monodirectional molecular rotor. Nature. 1999;401:152–155.
  • Zerrouki D, Baudry J, Pine D, et al. Chiral colloidal clusters. Nature. 2008;455:380.
  • Noblin X, Rojas NO, Westbrook J, et al. The fern sporangium: a unique catapult. Science. 2012;335:1322.
  • Elbaum R, Zaltzman L, Burgert I, et al. The role of wheat awns in the seed dispersal unit. Science. 2005;316:884–886.
  • Canejo JP, Fernandes SN, Godinho MH, et al. Liquid fibres and their networks from cellulose-based liquid crystalline solutions. Liq Cryst. 2018;45(16):1–9.
  • Godinho M, Gray D, Pieranski P. Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system. Liq Cryst. 2017;44(12–13):2108–2120.
  • Huang H, Li W, Shi Y, et al. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites. Nanoscale. 2017;9:6877–6885.
  • Lee D, Sang EH. Chiral nanocomposites: hand-twisting light. Nat Mater. 2016;15:377–388.
  • Lan X, Liu T, Wang Z, et al. DNA-guided plasmonic helix with switchable chirality. J Am Chem Soc. 2018;140:11763–11770.
  • Mokashi-Punekar S, Merg AD, Rosi NL. Systematic adjustment of pitch and particle dimensions within a family of chiral plasmonic gold nanoparticle single helices. J Am Chem Soc. 2017;139:15043–15048.
  • Lan X, Su Z, Zhou Y, et al. Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew Chemie Int Ed. 2017;129:14824–14828.
  • Guo J, Cao H, Wei J, et al. Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light. Appl Phy Lett. 2008;93:201901.
  • Elbaum R, Zaltzman L, Burgert I, et al. The role of wheat awns in the seed dispersal unit. Science. 2007;316:884–886.
  • Reyssat E, Mahadevan L. Hygromorphs: from pine cones to biomimetic bilayers. J R Soc Interface. 2009;6:951–957.
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist–bend nematic–nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dimer. J Am Chem Soc. 2016;138(16):5283–5289.
  • Gelebart AH, Jan MD, Varga M, et al. Making waves in a photoactive polymer film. Nature. 2017;546:632–638.
  • Ware TH, Mcconney ME, Wie JJ, et al. Voxelated liquid crystal elastomers. Science. 2015;347:982–984.
  • Liu D, Broer DJ. New insights into photoactivated volume generation boost surface morphing in liquid crystal coatings. Nat Commun. 2015;6:8334.
  • Lv JA, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016;537:179–184.
  • Liu L, Liu MH, Deng LL, et al. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property. J Am Chem Soc. 2017;139:11333–11336.
  • Zheng Z, Li Y, Bisoyi HK, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature. 2016;531:352.
  • Lu X, Guo S, Tong X, et al. Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv Mater. 2017;29:1606467.
  • Yang R, Zhao Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an approach to complex and programmable shape changes. Angew Chem Int Ed. 2017;56:14202–14206.
  • Ahir SV, Tajbakhsh AR, Terentjev EM. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater 2010;16:556–560.
  • Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater. 2014;13:36–41.
  • Wani OM, Zeng H, Priimagi A. A light-driven artificial flytrap. Nat Commun. 2017;8:15546.
  • Liu Y, Xu B, Sun S, et al. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv Mater. 2017;29:1604792.
  • Chen L, Wang M, Guo LX, et al. A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing. J Mater Chem C Mater. 2018;6:8251–8257.
  • Shahsavan H, Salili SM, Jákli A, et al. Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Adv Mater. 2017;29:1604021.
  • Iamsaard S, Aßhoff SJ, Matt B, et al. Conversion of light into macroscopic helical motion. Nat Chem. 2014;6:229–235.
  • Xia Y, Cedillo-Servin G, Kamien RD, et al. Guided folding of nematic liquid crystal elastomer sheets into 3D via patterned 1D microchannels. Adv Mater. 2016;28:9637–9643.
  • Liu X, Wei R, Hoang PT, et al. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv Funct Mater 2015;25:3022–3032.
  • Klein Y, Efrati E, Sharon E. Shaping of elastic sheets by prescription of non-euclidean metrics. Science. 2007;315:1116–1120.
  • Behl M, Razzaq MY, Lendlein A. Multifunctional shape-memory polymers. Adv Mater. 2010;22:3388–3410.
  • Zhou F, Biesheuvel PM, Choi E-Y, et al. Polyelectrolyte brush amplified electroactuation of microcantilevers. Nano Lett. 2008;8:725–730.
  • Ionov L. 3D microfabrication using stimuli-responsive self-folding polymer films. Polym Rev. 2013;53:92–107.
  • Yu Y, Ikeda T. Soft actuators based on liquid-crystalline elastomers. Angew Chemie Int Ed. 2006;45:5416–5418.
  • Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016;116:15089–15166.
  • Wang L, He W, Xiao X, et al. Wide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogens. J Mater Chem. 2012;22:2383–2386.
  • Yang H, Ye G, Wang X, et al. Micron-sized liquid crystalline elastomer actuators. Soft Matter. 2011;7:815–823.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14:1087–1098.
  • Yu H, Ikeda T. Photocontrollable liquid-crystalline actuators. Adv Mater. 2011;23:2149–2180.
  • Ikeda T, Mamiya J, Yu Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chemie Int Ed. 2007;46:506–528.
  • Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater. 2010;22:3366–3387.
  • Küpfer J, Finkelmann H. Nematic liquid single crystal elastomers. Makromol Chem Rapid Commun 1991;12:717–726.
  • De Gennes P. Possibilities offertes par la reticulation de polymeres en presence d’un cristal liquide. Phys Lett A. 1969;28:725–726.
  • Fukunaga A, Urayama K, Takigawa T, et al. Dynamics of electro-opto-mechanical effects in swollen nematic elastomers. Macromolecules. 2008;41:9389–9396.
  • Urayama K, Honda S, Takigawa T. Deformation coupled to director rotation in swollen nematic elastomers under electric fields. Macromolecules. 2006;39:1943–1949.
  • Urayama K, Honda S, Takigawa T. Electrooptical effects with anisotropic deformation in nematic gels. Macromolecules. 2005;38:3574–3576.
  • Terentjev E, Warner M, Bladon P. Orientation of nematic elastomers and gels by electric fields. J At Mol Phys. 1994;4:667–676.
  • Liu W, Guo LX, Lin BP, et al. Near-infrared responsive liquid crystalline elastomers containing photothermal conjugated polymers. Macromolecules. 2016;49:4023–4030.
  • Cviklinski J, Tajbakhsh A, Terentjev EM. UV isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur Phys J E. 2002;9:427–434.
  • Hogan P, Tajbakhsh A, Terentjev E. UV manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E. 2002;65:041720.
  • Finkelmann H, Nishikawa E, Pereira G, et al. A new opto-mechanical effect in solids. Phys Rev Lett. 2001;87:015501.
  • Yu Y, Nakano M, Ikeda T. Photomechanics: directed bending of a polymer film by light. Nature. 2003;425:145.
  • Kaiser A, Winkler M, Krause S, et al. Magnetoactive liquid crystal elastomer nanocomposites. J Mater Chem. 2009;19:538–543.
  • Thomsen DL, Keller P, Naciri J, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2001;34:5868–5875.
  • Lee K M, Bunning TJ, White TJ. Autonomous, hands-free shape memory in glassy, liquid crystalline polymer networks. Adv Mater. 2012;24:2839–2843.
  • de Haan LT, Gimenez-Pinto V, Konya A, et al. Accordion-like actuators of multiple 3D patterned liquid crystal polymer film. Adv Funct Mater 2014;24:1251–1258.
  • Sawa Y, Ye F, Urayama K, et al. Shape selection of twist-nematic-elastomer ribbons. Proc Natl Acad Sci U S A. 2011;108:6364–6368.
  • de Haan LT, Verjans JM, Broer DJ, et al. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J Am Chem Soc. 2014;136(30):10585–10588.
  • Verpaalen RC, Debije MG, Bastiaansen CW, et al. Programmable helical twisting in oriented humidity-responsive bilayer films generated by spray-coating of a chiral nematic liquid crystal. J Mater Chem A. 2018;6(36):17724–17729.
  • Boothby J, Ware T. Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers. Soft Matter. 2017;13:4349–4356.
  • Wang M, Lin B-P, Yang H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nat Commun. 2016;7:13981.
  • Neufeld RAE, Shahsavan H, Zhao B, et al. Simulation-based design of thermally-driven actuators using liquid crystal elastomers. Liq Cryst. 2018;45(7):1010–1022.
  • Tajbakhsh A, Terentjev E. Spontaneous thermal expansion of nematic elastomers. Eur Phys J E. 2001;6:181–188.
  • Küupfer J, Finkelmann H. Liquid crystal elastomers: influence of the orientational distribution of the crosslinks on the phase behaviour and reorientation processes. Macromol Chem Phys. 1994;195:1353–1367.
  • Li C, Liu Y, Lo CW, et al. Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter. 2011;7:7511–7516.
  • Li C, Liu Y, Huang X, et al. Direct sun-driven artificial heliotropism for solar energy harvesting based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv Funct Mater. 2012;22:5166–5174.
  • Liu L, Wang M, Guo LX, et al. Aggregation-induced emission luminogen-functionalized liquid crystal elastomer soft actuators. Macromolecules. 2018;51:4516–4524.
  • Guo LX, Liu M, Sayed SM, et al. A calamitic mesogenic near-infrared absorbing croconaine dye/liquid crystalline elastomer composite. Chem Sci. 2016;7:4400–4406.
  • Wang M, Sayed SM, Guo LX, et al. Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites. Macromolecules. 2016;49:663–671.
  • Zuo B, Wang M, Lin BP, et al. Photomodulated tri-color-changing artificial flowers. Chem Mater 2018;30:8079–8088.
  • Agrawal A, Chipara AC, Shamoo Y, et al. Dynamic self-stiffening in liquid crystal elastomers. Nat Commun. 2013;4:1739.
  • Garcíamárquez AR, Heinrich B, Beyer N, et al. Mesomorphism and shape-memory behavior of main-chain liquid-crystalline co-elastomers: modulation by the chemical composition. Macromolecules. 2014;47:5198–5210.
  • Ahir SV, Terentjev EM. Photomechanical actuation in polymer-nanotube composites. Nat Mater. 2005;4:491–495.
  • Ikeda T, Nakano M, Yu Y, et al. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater. 2003;15:201–205.
  • Wang M, Guo LX, Lin BP, et al. Photo-responsive polysiloxane-based azobenzene liquid crystalline polymers prepared by thiolene click chemistry. Liq Cryst. 2016;43:1626–1635.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.