478
Views
13
CrossRef citations to date
0
Altmetric
Article

Colour 3D holographic display based on a quantum-dot-doped liquid crystal

, , &
Pages 1478-1484 | Received 26 Dec 2018, Accepted 18 Jan 2019, Published online: 23 Apr 2019

References

  • Blanche P-A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature. 2010;468:80–83.
  • Gabor D. A new microscopic principle. Nature. 1948;161:777–778.
  • Geng J. Three-dimensional display technologies. Adv Opt Photon. 2013;5:456–535.
  • Hahn J, Kim H, Lim Y, et al. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Opt Exp. 2008;16:12372–12386.
  • Yaraş F, Kang H, Onural L. Circular holographic video display system. Opt Exp. 2011;19:9147–9156.
  • Kozacki T, Finke G, Garbat P, et al. Wide angle holographic display system with spatiotemporal multiplexing. Opt Exp. 2012;20:27473–27481.
  • Kim Y, Stoykova E, Kang H, et al. Seamless full color holographic printing method based on spatial partitioning of SLM. Opt Exp. 2015;23:172–182.
  • Zhou PC, Li Y, Li X, et al. Holographic display and storage based on photo-responsive liquid crystals. Liq Cryst Rev. 2016;4:83–100.
  • Tay S, Blanche P-A, Voorakaranam R, et al. An updatable holographic three-dimensional display. Nature. 2008;451:694–698.
  • Wu P, Sun SQ, Baig S, et al. Nanoscale optical reinforcement for enhanced reversible holography. Opt Exp. 2012;20:3091–3097.
  • Tsutsumi N, Kinashi K, Sakai W, et al. Real-time three-dimensional holographic display using a monolithic organic compound dispersed film. Opt Mater Exp. 2012;2:1003–1010.
  • Tsutsumi N, Kinashi K, Nonomura A, et al. Quickly updatable hologram images using poly (N-vinyl Carbazole)(PVCz) photorefractive polymer composite. Materials. 2012;5:1477–1486.
  • Chen AG, Brady DJ. Real-time holography in azo-dye-doped liquid crystals. Opt Lett. 1992;17:441–443.
  • Chen AG, Brady DJ. Two-wavelength reversible holograms in azo-dye doped nematic liquid crystals. Appl Phys Lett. 1993;62:2920–2922.
  • Sasaki T, Ikegami M, Abe T, et al. Real-time dynamic hologram in photorefractive ferroelectric liquid crystal with two-beam coupling gain coefficient of over 800 cm–1 and response time of 8 ms. Appl Phys Lett. 2013;102:063306.
  • Li X, Chen CP, Gao HY, et al. Video-rate holographic display using azo-dye-doped liquid crystal. J Disp Technol. 2014;10:438–443.
  • Li X, Chen CP, Li Y, et al. High-efficiency video-rate holographic display using quantum dot doped liquid crystal. J Disp Technol. 2016;12:362–367.
  • Yamaguchi T, Miyamoto O, Yoshikawa H. Volume hologram printer to record the wavefront of three-dimensional objects. Opt Eng. 2012;51:075802.
  • Khoo IC, Chen K, Williams YZ. Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal&-bulk and interface contributions. IEEE J Sel Top Quantum Elect. 2006;12:443–450.
  • Ostroverkhova O, Moerner WE. Organic photorefractives: mechanisms, materials, and applications. Chem Rev. 2004;104:3267–3314.
  • Günter P, Huignard J-P, Glass AM. Photorefractive materials and their applications. Berlin, Germany: Springer; 1989.
  • Khoo IC. Orientational photorefractive effects in nematic liquid crystal films. IEEE J Quantum Elect. 1996;32:525–534.
  • Lynn B, Blanche P-A, Peyghambarian N. Photorefractive polymers for holography. J Polym Sci Part B Polym Phys. 2014;52:193–231.
  • Khoo IC, Ding J, Zhang Y, et al. Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C-60-doped nematic liquid crystal. Appl Phys Lett. 2003;82:3587–3589.
  • Li X, Li Y, Xiang Y, et al. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display. Opt Exp. 2016;24:8824–8831.
  • Doke S, Sonawane K, Reddy VR, et al. Low power operated highly luminescent ferroelectric liquid crystal doped with CdSe/ZnSe core/shell quantum dots. Liq Cryst. 2018;45(10):1518–1524.
  • Shcherbinin DP, Konshina EA. Ionic impurities in nematic liquid crystal doped with quantum dots CdSe/ZnS. Liq Cryst. 2017;44(4):648–655.
  • Atorf B, Funck T, Hegmann T, et al. Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures. Liq Cryst. 2017;44(12–13):1929–1947.
  • Xu J, Okada H, Onnagawa H, et al. Liquid crystal system as molecular machinery: investigation of dynamic impedance matching between molecular core and terminal groups using rotor-bearing model. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap. 2000;39:1801–1807.
  • Zhao H, Lian C, Huang F, et al. Impact of grating spacing and electric field on real time updatable holographic recording in nanoscale ZnSe film assisted liquid crystal cells. Appl Phys Lett. 2012;101:211118.
  • Xu MY, Liu YK, Xiang Y, et al. A fast light-induced grating in bent-core nematic liquid crystals with in-plane switching. Appl Phys Lett. 2013;103:083507.
  • Zhou PC, Bi Y, Sun MY, et al. Image quality enhancement and computation acceleration of 3D holographic display using a symmetrical 3D GS algorithm. Appl Opt. 2014;53:G209–G213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.