344
Views
17
CrossRef citations to date
0
Altmetric
Article

Alkylthio- and alkyl-substituted asymmetric diphenyldiacetylene-based liquid crystals: phase transitions, mesophase and single-crystal structures, and birefringence

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1621-1630 | Received 06 Jan 2019, Accepted 02 Mar 2019, Published online: 15 Jul 2019

References

  • Dąbrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3:443–482.
  • Chee MG, Song MH, Kim D, et al. Lowring lasing threshold in chiral nematic liquid crystal structure with different anisotropies. Jpn J Appl Phys. 2007;46:L437–L439.
  • Stapert HR, Del Valle S, Verstegen EJK, et al. Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs. Adv Funct Mater. 2003;13:732–738.
  • Syed IM, Kaur S, Milton HE, et al. Novel switching mode in a vertically aligned liquid crystal contact lens. Opt Express. 2015;23:9911–9916.
  • Si G, Zhao Y, Leong ESP, et al. Liquid-crystal-enabled active plasmonics: a review. Materials. 2014;7:1296–1317.
  • Franklin D, Chen Y, Vazquez Guardado A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun. 2015;6:7337.
  • Mazur R, Piecek W, Raszewski Z, et al. Nematic liquid crystal mixtures for 3D active glasses application. Liq Cryst. 2017;44:417–426.
  • Wu ST. Infrared properties of nematic liquid crystals: an overview. Opt Eng. 1987;26:120–128.
  • Raszewski Z, Piecek W, Jaroszewicz L, et al. High birefringence liquid crystals mixtures and their selected applications. Adv Mat Res. 2014;909:12–18.
  • Hu M, An Z, Li J, et al. Low mid-infrared absorption tolane liquid crystals terminated by 2, 2-difluorovinyloxyl: synthesis, characterization and properties. J Mater Chem C. 2016;4:4939–4945.
  • Herman J, Kula P. New low polar tolane cholesterics designed for infrared applications. RSC Adv. 2016;6:84231–84235.
  • Miszczyk E, Morawiak P, Mazur R, et al. A direct assessment of refractive indices of nematic liquid crystals at broad VIS-MWIR range. Liq Cryst. 2018;45:703–714.
  • Gauza S, Wang HY, Wen CH, et al. High birefringence isothiocyanato tolane liquid crystals. Jpn J Appl Phys. 2003;42:3463–3466.
  • Dziaduszek J, Dąbrowski R, Urban S, et al. Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications. Liq Cryst. 2017;44:1277–1292.
  • Li X, Tan N, Pivnenko M, et al. High-birefringence nematic liquid crystal for broadband THz applications. Liq Cryst. 2016;43:955–962.
  • Gray GW, Harrison KJ, Nash JA. New family of nematic liquid crystals for displays. Electron Lett. 1973;9:130–131.
  • Wu ST, Hsu CS, Chuang YY. Room temperature bistolane liquid crystals. Jpn J Appl Phys. 1999;38:L286–L288.
  • Li J, Li J, Hu M, et al. New isothiocyanatotolane liquid crystals with terminal but-3-enyl substitute. Liq Cryst. 2017;44:833–842.
  • Hird M, Seed AJ, Toyne KJ, et al. Synthesis, transition temperatures and optical anisotropy of some isothiocyanato-substituted biphenyls. J Mater Chem. 1993;3:851–859.
  • Seed AJ, Toyne KJ, Goodby JW. Synthesis, optical anisotropies, polarisabilities and order parameters of 4-cyanophenyl and 4-isothiocyanatophenyl 4′-butylsulfanylbenzoates with oxygen and sulfur substitution in the ester linkage. J Mater Chem. 1995;5:1–11.
  • Seed AJ, Toyne KJ, Goodby JW, et al. Synthesis, transition temperatures, and optical properties of various 2, 6-disubstituted naphthalenes and related 1-benzothiophenes with butylsulfanyl and cyano or isothiocyanato terminal groups. J Mater Chem. 2000;10:2069–2080.
  • Seed AJ, Pantalone K, Sharma UM, et al. A new synthesis of alkylsulphanylnaphthalenes and the synthesis and mesomorphic properties of novel naphthylisothiocyanates. Liq Cryst. 2009;36:329–338.
  • Seed AJ, Toyne KJ, Hird M, et al. Synthesis and mesomorphic behaviour of high polarisability materials for non-linear optical applications. Liq Cryst. 2012;39:403–414.
  • Węgłowska D, Kula P, Herman J. High birefringence bistolane liquid crystals: synthesis and properties. RSC Adv. 2016;6:403–408.
  • Herman J, Kula P. Design of new super-high birefringent isothiocyanato bistolanes–synthesis and properties. Liq Cryst. 2017;44:1462–1467.
  • Arakawa Y, Kang S, Watanabe J, et al. Assembly of thioether-containing rod-like liquid crystalline materials assisted by hydrogen-bonding terminal carboxyl groups. RSC Adv. 2015;5:8056–8062
  • Arakawa Y, Inui S, Tsuji H. Novel diphenylacetylenebased room-temperature liquid crystalline molecules with alkylthio groups, and investigation of the role for terminal alkyl chains in mesogenic incidence and tendency. Liq Cryst. 2018;45:811–820.
  • Arakawa Y, Kang S, Tsuji H, et al. Development of novel bistolane-based liquid crystalline molecules with an alkylsulfanyl group for highly birefringent materials. RSC Adv. 2016;6:16568–16574.
  • Arakawa Y, Kang S, Tsuji H, et al. The design of liquid crystalline bistolane-based materials with extremely high birefringence. RSC Adv. 2016;6:92845–92851.
  • Arakawa Y, Tsuji H. Phase transitions and birefringence of bistolane-based nematic molecules with an alkyl, alkoxy and alkylthio group. Mol Cryst Liq Cryst. 2017;647:422–429.
  • Arakawa Y, Sasaki Y, Haraguchi N, et al. Synthesis, phase transitions and birefringence of novel liquid crystalline 1,4-phenylene bis(4-alkylthio benzoates) and insights into the cybotactic nematic behaviour. Liq Cryst. 2018;45:821–830.
  • Arakawa Y, Kuwahara H, Tokita M, et al. New fabrication approach to develop a high birefringence photo-crosslinked film based on a sulfur-containing liquid crystalline molecule with large temperature dependence of birefringence. Mol Cryst Liq Cryst. 2018;662:197–207.
  • Dalcanale E, Arena C, Catellani M, et al. Mesogenic aromatic esters with sulphur containing alkyl chains. Liq Cryst. 1992;12:905–912.
  • Petrov VF. Sulphur as a structural element in calamitic liquid crystals: terminal, linking and lateral substitutions. Mol Cryst Liq Cryst. 2005;442:63–92.
  • Allinger NL, Hickey MJ. Conformational analysis. CVIII. Calculation of the structures and energies of alkanethiols and thiaalkanes by the molecular mechanics method. J Am Chem Soc. 1975;97:5167–5177.
  • Li X, Lee SK, Kang S, et al. Effect of alkylthio tail on phase behaviors of bent-shaped molecules based on naphthalene core. Chem Lett. 2009;38:424–425.
  • Arakawa Y, Sasaki Y, Igawa K, et al. Hydrogen bonding liquid crystalline benzoic acids with alkylthio groups: phase transition behavior and insights into cybotactic nematic phase. New J Chem. 2017;41:6514–6522.
  • Zong X, Fang Z, Wu C. Synthesis and mesomorphic properties of a series of dimers derived from thioether-terminated and cholesteryl. Liq Cryst. 2018;45:1844–1853.
  • Adam D, Schumacher P, Simmerer J, et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature. 1994;371:141–143.
  • Kouwer PHJ, Jager WF, Mijs WJ, et al. Specific interactions in discotic liquid crystals. J Mater Chem. 2003;13:458–469.
  • Ban K, Nishizawa K, Ohta K, et al. Discotic liquid crystals of transition metalcomplexes 29: mesomorphism and charge transport properties of alkylthio- substitutedphthalocyanine rare-earth metal sandwich complexes. J Mater Chem. 2001;11:321–331.
  • Shoji Y, Kajitani T, Ishiwari F, et al. Chem Sci. 2017;8:8405–8410. DOI:10.1039/C7SC03860G.
  • Arakawa Y, Sasaki Y, Tsuji H. Novel hydrogen-bonded liquid crystalline complexes between 4-alkylthiobenzoic acids and 4-phenylpyridine. Chem Lett. 2017;46:1657–1659.
  • Grant B. Diacetylenic liquid crystals: synthesis and preliminary characterization of 4,4′- dialkyl and 4,4′-dialkoxy derivatives of diphenyldiacetylene. Mol Cryst Liq Cryst. 1978;48:175–182.
  • Wu ST, Meng HB, Dalton LR. Diphenyl-diacetylene liquid crystals for electro-optic application. J Appl Phys. 1991;70:3013–3017.
  • Goto Y, Inukai T, Fujita A, et al. New nematics with high birefringence. Mol Cryst Liq Cryst. 1995;260:23–38.
  • Neubert ME, Keast SS, Kim JM, et al. The effect of replacing a benzene ring with a saturated six-membered ring on the mesomorphic properties of 4,4′-disubstituted diphenyldiacetylenes. Liq Cryst. 2004;31:175–184.
  • Arakawa Y, Nakajima S, Ishige R, et al. Synthesis of diphenyl-diacetylene-based nematic liquid crystals and their high birefringence properties. J Mater Chem. 2012;22:8394–8398.
  • Arakawa Y, Kang S, Nakajima S, et al. Synthesis of new wide nematic diaryl-diacetylenes containing thiophene-based heteromonocyclic and heterobicyclic structures, and their birefringence properties. Liq Cryst. 2014;41:642–651.
  • Miao ZC, Wang D, Zhang YM, et al. Asymmetrical phenyldiacetylenes liquid crystalline compounds with high birefringence and characteristics of selective reflection. Liq Cryst. 2012;39:1291–1296.
  • Chen R, An Z, Wang W, et al. Lateral substituent effects on UV stability of high-birefringence liquid crystals with the diaryl-diacetylene core: DFT/TD-DFT study. Liq Cryst. 2017;44:1515–1524.
  • Aver’yanov EM. Temperature dependences of the refractive indices of uniaxial calamitic liquid crystals with high birefringence. Liq Cryst Their Appl. 2018;18:53–63.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42:339–341.
  • Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst. 2015;A71:3–8.
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Cryst. 2015;C71:3–8.
  • Revision B.01; Frisch MJ, Trucks GW, et al. Wallingford (CT): Gaussian, Inc.; 2016.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652.
  • Stephens PJ, Devlin FJ, Chabalowski CFN, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98(45):11623–11627.
  • Dennington R, Keith TA, Millam JM. GaussView, version 6. Shawnee Mission (KS): Semichem Inc.; 2016.
  • Glaser C. Beiträge zur kenntniss des acetenylbenzols. Ber Dtsch Chem Ges. 1869;2:424.
  • Hay AS. Oxidative coupling of acetylenes II1. J Org Chem. 1962;27:3320–3321.
  • Su L, Dong J, Liu L, et al. Copper catalysis for selective heterocoupling of terminal alkynes. J Am Chem Soc. 2016;138(38):12348–12351.
  • Imrie CT, Taylor L. The preparation and properties of low molar mass liquid crystals possessing lateral alkyl chains. Liq Cryst. 1989;6(1):1–10.
  • Vries AD. X-ray photographic studies of liquid crystals I. A cybotactic nematic phase. Mol Cryst Liq Cryst. 1970;10:219–236.
  • Tschierske C, Photinos DJ. Biaxial nematic phases. J Mater Chem. 2010;20:4263–4294.
  • Haller I. Thermodynamic and static properties of liquid crystals. Prog Solid State Chem. 1975;10:103–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.