250
Views
11
CrossRef citations to date
0
Altmetric
Article

Amphotropic liquid-crystalline behaviour of glycolipids in amino acid ionic liquids

, , & ORCID Icon
Pages 1298-1306 | Received 14 Dec 2018, Accepted 04 Mar 2019, Published online: 28 Mar 2019

References

  • Hakomori S. The glycosynapse. Pnas. 2002;99:225–232.
  • Hashim R, Sugiura A, Minamikawa H, et al. Nature-like synthetic alkyl branched-chain glycolipid: a review on chemical structure and self-assembly properties. Liq Cryst. 2012;39:1.
  • Brown DA1, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992;68:533–544.
  • Faivre V, Rosilio V. Interest of glycolipids in drug delivery: from physicochemical properties to drug targeting. Expert Opin Drug Deliv. 2010;7:1031–1048.
  • Kameta N, Yoshida K, Masuda M, et al. Supramolecular nanotube hydrogels: remarkable resistance effect of confined proteins to denaturants. Chem Mater. 2009;21:5892–5898.
  • Kameta N, Masuda M, Shimizu T. Soft nanotube hydrogels functioning as artificial chaperones. ACS Nano. 2012;6:5249–5258.
  • Kameta N, Matsuzawa T, Yaoi K, et al. Glycolipid-based nanostructures with thermal-phase transition behavior functioning as solubilizers and refolding accelerators for protein aggregates. Soft Matter. 2017;13:3084–3090.
  • Baron C, Thompson TE. Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoyl phosphatidylcholine. Biochim Biophys Acta. 1975;382:276–285.
  • Rosevear P, VanAken T, Baxter J, et al. Alkyl glycoside detergents: a simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry. 1980;19:4108–4115.
  • Santonicola MG, Lenhoff AM, Kaler EW. Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability. Biophys J. 2008;94:3647–3658.
  • Vill V, Hashim R. Carbohydrate liquid crystals: structure–property relationship of thermotropic and lyotropic glycolipids. Curr Opin Colloid Interface Sci. 2002;7:395–409.
  • Prade H, Miethchen R, Vill V. Thermotropic liquid crystals based on amphiphilic carbohydrates. ChemInform. 1995;26:427–440.
  • Goodby JW, Görtz V, Cowling SJ, et al. Thermotropic liquid crystalline glycolipids. Chem Soc Rev. 2007;36:1971–2032.
  • Kitamoto D, Morita T, Fukuoka T, et al. Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci. 2009;14:315–328.
  • Goodby JW. Liquid crystals and life. Liq Cryst. 1998;24:25–38.
  • Ohno H. Functional design of ionic liquids. Bull Chem Soc Jpn. 2006;79:1665–1680.
  • Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–150.
  • Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev. 2011;111:3508–3576.
  • Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–6426.
  • Watanabe M, Thomas ML, Zhang S, et al. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev. 2017;117:7190–7239.
  • Greaves TL, Weerawardena A, Fong C, et al. Many protic ionic liquids mediate hydrocarbon-solvent interactions and promote amphiphile self-assembly. Langmuir. 2007;23:402–404.
  • Greavesa TL, Drummond CJ. Ionic liquids as amphiphile self-assembly media. Chem Soc Rev. 2008;37:1709–1726.
  • Kimizuka N, Nakashima T. Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels. Langmuir. 2001;17:6759–6761.
  • Yoshio M, Mukai T, Kanie K, et al. Layered ionic liquids: anisotropic ion conduction in new self-organized liquid-crystalline materials. Adv Mater. 2002;14:351–354.
  • Ichikawa T, Yoshio M, Taguchi S, et al. Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid–crystalline bicontinuous cubic phases. Chem Sci. 2012;3:2001–2008.
  • Ichikawa T, Fujimura K, Yoshio M, et al. Designer lyotropic liquid-crystalline systems containing amino acid ionic liquids as self-organisation media of amphiphiles. Chem Commun. 2013;49:11746–11748.
  • Wang J, Greaves TL, Kennedy DF, et al. Amino acid-derived protic ionic liquids: physicochemical properties and behaviour as amphiphile self-assembly media. Aust J Chem. 2011;64:180–189.
  • Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–2399.
  • Fujimura K, Ichikawa T, Yoshio M, et al. A comprehensive study on lyotropic liquid–crystalline behavior of an amphiphile in 20 kinds of amino acid ionic liquids. Chem Asian J.2016;11:520–526.
  • Fujiwara S, Ohno H, Yoshio M, et al. Design of dication-type amino acid ionic liquids and their application to self-assembly media of amphiphiles. Bull Chem Soc Jpn. 2018;91:1–5.
  • Fujiwara S, Ohno H, Ichikawa T. A tailor-made design of lipidic bicontinuous cubic matrices using amino acid ionic liquids as self-assembly media. Mol Syst Des Eng. 2018;3:668–676.
  • Swatloski RP, Spear SK, Holbrey JD, et al. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–4975.
  • Fukaya Y, Hayashi K, Wada M, et al. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem. 2008;10:44–46.
  • Chiba R, Ito M, Nishio Y. Addition effects of imidazolium salts on mesophase structure and optical properties of concentrated hydroxypropyl cellulose aqueous solutions. Polym J. 2010;43:232–241.
  • Ogawa S, Arakawa K, Osanai S. Thermotropic and glass transition behaviors of n-alkyl β-D-glucosides. RSC Adv. 2013;3:21439–21446.
  • Ogawa S, Takahashi I, Koga M, et al. Effect of freeze–thaw treatment on the precipitation of octyl β -D-galactoside hemihydrate crystal from the aqueous solution. J Oleo Sci. 2018;67:627–637.
  • Dörfler H-D, Göpfert A. Lyotropic liquid crystals in binary systems N-alkyl glycosides/water. J Dispersion Sci Technol. 1999;20:35–58.
  • Loewenstein A, Igner D. Deuterium NMR studies of n-octyl-, n-nonyl-, n-decyl-D-glucopyranoside liquid crystalline systems. Liq Cryst. 1993;13:531–539.
  • Hashim R, Zahid N-I, Velayutham TS, et al.. Dry thermotropic glycolipid self-assembly: a review. J Oleo Sci. 2018;67:651–668.
  • Nilsson F, Söderman O. Physical−chemical properties of the n-octyl β-d-glucoside/water system. A phase diagram, self-diffusion NMR, and SAXS Study. Langmuir. 1996;12:902–908.
  • Nilsson F, Söderman O, Hansson P. Physical−chemical properties of C9G1 and C10G1 β-alkylglucosides. phase diagrams and aggregate size/structure. Langmuir. 1998;14:4050–4058.
  • Häntzschel D, Schulte J, Enders S, et al. Thermotropic and lyotropic properties of n-alkyl-β-D-glucopyranoside surfactants. Phys Chem Chem Phys. 1999;1:895–904.
  • Sakya P, Seddon J, Templer R. Lyotropic phase behaviour of n-octyl-1-O-β-D-glucopyranoside and its thio derivative n-octyl-1-S-β-D-glucopyranoside. J Phys II Fr. 1994;4:1311–1331.
  • Chung YJ, Jeffrey GA. The lyotropic liquid crystal properties of n-octyl-1-O-β-d-glucopyranoside, and related n-alkyl pyranosides. Biochim Biophys Acta Biomembr. 1989;985:300–306.
  • Salim M, Idayu Zahid N, Liew CY, et al. Cubosome particles of a novel Guerbet branched chain glycolipid. Liq Cryst. 2015;43:168–174.
  • Tschierske C. Amphotropic liquid crystals. Curr Opin Colloid Interface Sci. 2002;7:355–370.
  • Kamlet MJ, Taft RW. The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc. 1976;98:377–383.
  • Crowhurst L, Mawdsley PR, Perez-Arlandis JM, et al. Solvent–solute interactions in ionic liquids. Phys Chem Chem Phys. 2003;5:2790–2794.
  • Kato T, Yoshio M, Ichikawa T, et al. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater. 2017;2:17001.
  • Broer DJ, Bastiaansen CMW, Debije MG. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew Chem Int Ed. 2012;51:7102–7109.
  • Mueller A, O’Brien DF. Supramolecular materials via polymerization of mesophases of hydrated amphiphiles. Chem Rev. 2002;102:727–758.
  • Lu X, Nguyen V, Zhou M, et al. Crosslinked bicontinuous cubic lyotropic liquid-crystal/butyl-rubber composites: highly selective, breathable barrier materials for chemical agent protection. Adv Mater. 2006;18:3294–3298.
  • Beginn U, Zipp G, Moller M. Functional membranes containing ion-selective matrix-fixed supramolecular channels. Adv Mater. 2000;12:510–513.
  • Hoag BP, Gin DL. Cross-linkable liquid crystal monomers containing hydrocarbon 1,3-Diene tail systems. Macromolecules. 2000;33:8549–8558.
  • Yoshio M, Kagata T, Hoshino K, et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J Am Chem Soc. 2006;128:5570–5577.
  • Jin LY, Bae J, Ryu JH, et al. Ordered nanostructures from the self-assembly of reactive coil-rod-coil molecules. Angew Chem Int Ed. 2006;45:650–653.
  • Zhou M, Nemade PR, Lu X, et al. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J Am Chem Soc. 2007;129:9574–9575.
  • Forney BS, Guymon CA. Nanostructure evolution during photopolymerization in lyotropic liquid crystal templates. Macromolecules. 2010;43:8502–8510.
  • Ichikawa T, Yoshio M, Hamasaki A, et al. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J Am Chem Soc. 2011;133:2163–2169.
  • Henmi M, Nakatsuji K, Ichikawa T, et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater. 2012;24:2238–2241.
  • Yamashita A, Yoshio M, Shimizu S, et al. Columnar nanostructured polymer films containing ionic liquids in supramolecular one-dimensional nanochannels. J Polym Sci Part A. 2015;53:366–371.
  • Takeuchi H, Ichikawa T, Yoshio M, et al. Induction of bicontinuous cubic liquid-crystalline assemblies for polymerizable amphiphiles via tailor-made design of ionic liquids. Chem Commun. 2016;52:13861–13864.
  • Wegner G. Topochemical polymerization of monomers with conjugated triple bonds. Macromol Chem. 1972;154:35–48.
  • Hersel W, Sixi H, Wegner G. The optical intermediates of the low-temperature photopolymerization of TSHO diacetylene crystals. Chem Phys Lett. 1980;73:288–293.
  • Wang G, Yang H, Cheuk S, et al. Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators. Beilstein J Org Chem. 2011;7:234–242.
  • Zhang Y, Ma B, Li Y, et al. Enhanced affinochromism of polydiacetylene monolayer in response to bacteria by incorporating CdS nano-crystallites. Coloids Surf B Biointerfaces. 2004;35:41–44.
  • Charych DH, Nagy JO, Spevak W, et al. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science. 1993;261:585–588.
  • Singh Y, Jayaraman N. Visual detection of pH and biomolecular interactions at micromolar concentrations aided by a trivalent diacetylene-based vesicle. Macromol Chem Phys. 2017;218:1700039.
  • Krishnan BP, Raghu S, Mukherjee S, et al. Organogel-assisted topochemical synthesis of multivalent glyco-polymer for high-affinity lectin binding. Chem Commun. 2016;52:14089–14092.
  • Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed. 1998;37:2754–2794.
  • Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev. 2002;102:555–578.
  • Yang Y, Lu L, Lu M, et al. Functional nanocomposites prepared by self-assembly and polymerization of diacetylene surfactants and silicic acid. J Am Chem Soc. 2003;125:1269–1277.
  • Jonas U, Shah K, Norvez S, et al. Reversible color switching and unusual solution polymerization of hydrazide-modified diacetylene lipids. J Am Chem Soc. 1999;121:4580–4588.
  • Tanphibal P, Tashiro K, Chirachanchai S. Constructing π-electron-conjugated diarylbutadiyne-based polydiacetylene under molecular framework controlled by hydrogen bond and side-chain substituent position. Macromol Rapid Commun. 2016;37:685–690.
  • Mansueto M, Frey W, Laschat S. Ionic liquid crystals derived from amino acids. Chem Eur J. 2013;19:16058–16065.
  • Echue G, Lloyd-Jones GC, Faul CFJ. Chiral perylene diimides: building blocks for ionic self-assembly. Chem Eur J. 2015;21:5118–5128.
  • Neidhardt MM, Schmitt K, Baro A, et al. Self-assembly and biological activities of ionic liquid crystals derived from aromatic amino acids. Phys Chem Chem Phys. 2018;20:20371–20381.
  • Neidhardt MM, Wolfrum M, Beardsworth S, et al. Tyrosine-based ionic liquid crystals: switching from a smectic A to a columnar mesophase by exchange of the spherical counterion. Chem Eur J. 2016;22:16494–16504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.