347
Views
13
CrossRef citations to date
0
Altmetric
Article

Improvement of the dynamic responses of liquid crystal mixtures through γ-Fe2O3 nanoparticle doping and driving mode adjustment

, , , , , , , , , , , , , & show all
Pages 1643-1654 | Received 11 Jan 2019, Accepted 06 Mar 2019, Published online: 12 Jul 2019

References

  • Yang DK, Wu ST. Fundamentals of liquid crystal devices: liquid crystal physics. Chichester (UK): Wiley; 2006.
  • Liu CY, Chen LW. Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation. Opt Express. 2004;12(12):2616–2624.
  • Heilmeier GH, Goldmacher JE. A new electric field controlled reflective optical storage effect in mixed liquid crystal systems. Appl Phys Lett. 1968;13(4):132–133.
  • Decker M, Kremers C, Minovich A, et al. Electro-optical switching by liquid-crystal controlled metasurfaces. Opt Express. 2013;21(7):8879–8885.
  • Calero V, Garcíamartínez P, Albero J, et al. Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders. Opt Lett. 2013;38(22):4663–4666.
  • Wu ST. Nematic liquid crystal modulator with response time less than 100 μs at room temperature. Appl Phys Lett. 1990;57(10):986–988.
  • Rao L, Gauza S, Wu ST. Low temperature effects on the response time of liquid crystal displays. Appl Phys Lett. 2009;94:071112.
  • Chen Y, Ya J, Sun J, et al. A microsecond-response polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2011;99(20):201105.
  • Lin XW, Hu W, Hu XK, et al. Fast response dual-frequency liquid crystal switch with photo-patterned alignments. Opt Lett. 2012;37(17):3627–3629.
  • Yan J, Li Y, Wu ST. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. Opt Lett. 2011;36(8):1404–1406.
  • Fan YH, Ren H, Liang X, et al. Dual-frequency liquid crystal gels with submillisecond response time. Appl Phys Lett. 2004;85(13):2451–2453.
  • Chen CC, Chiang WF, Tsai MC, et al. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells. Opt Lett. 2015;40(9):2021–2024.
  • Chen Y, Xu D, Wu ST, et al. A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2013;102(14):141116.
  • Dierking I, Scalia G, Morales P, et al. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv Mater. 2004;16(11):865–869.
  • Choi YC, Lee JW, Lee SK, et al. The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit. Nanotechnology. 2008;19(23):235306.
  • Jeon SY, Park KA, Baik I, et al. Dynamic response of carbon nanotubes dispersed in nematic liquid crystal. Nano. 2007;2(1):41–49.
  • Khoo IC, Ding J, Zhang Y, et al. Supra-nonlinear photorefractive response of C60 and single-wall carbon nanotube-doped nematic liquid crystal. Appl Phys Lett. 2003;82(21):3587–3589.
  • Ganguly P, Kumar A, Tripathi S, et al. Faster and highly luminescent ferroelectric liquid crystal doped with ferroelectric BaTiO3 nanoparticles. Appl Phys Lett. 2013;102(22):222902.
  • Tripathi S, Ganguly P, Haranath D, et al. Optical response of ferroelectric liquid crystals doped with metal nanoparticles. Appl Phys Lett. 2013;102(6):063115.
  • Chung HK, Park HG, Ha YS, et al. Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion. Liq Cryst. 2013;40(5):632–638.
  • Cho MJ, Park HG, Jeong HC, et al. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq Cryst. 2014;41(6):761–767.
  • Gao L, Dai YY, Li T, et al. Enhancement of image quality in LCD by doping γ-Fe2O3 nanoparticles and reducing friction torque difference. Nanomaterials. 2018;8(911):8110911.
  • Shivakumar U, Mirzaei J, Feng X, et al. Nanoparticles: complex and multifaceted additives for liquid crystals. Liq Cryst. 2011;38(11):1495–1514.
  • Choudhary A, Singh G, Biradar AM. Advances in gold nanoparticle–liquid crystal composites. Nano. 2014;6(14):7743–7756.
  • Christophe B, Delphine C, Emmanuelle L. Ordering nano- and microparticles assemblies with liquid crystals. Liq Cryst Rev. 2013;1(2):83–109.
  • F V P, Gavrilyak M, Karaawi A, et al. Mechanism of electrooptic switching time enhancement in ferroelectric liquid crystal/gold nanoparticles dispersion. Liq Cryst. 2018;45(11):1594–1602.
  • Vimal T, Pandey S, Gupta SK, et al. Manifestation of strong magneto-electric dipolar coupling in ferromagnetic nanoparticles−FLC composite: evaluation of time-dependent memory effect. Liq Cryst. 2017;45(6):687–697.
  • Nanno Y, Maeda H, Yamamoto E, et al. An advanced capacitively coupled driving method for TFT‐LCDs. J Soc Inf Display. 2012;2(3):143–147.
  • Chan SH, Wu TX, Nguyen TQ. Comparison of two frame rate conversion schemes for reducing LCD motion blurs. IEEE Signal Proc Lett. 2010;17(9):783–786.
  • Love GD, Thalhammer G, Padgett MJ, et al. Speeding up liquid crystal SLMs using overdrive with phase change reduction. Opt Express. 2013;21(2):1779–1797.
  • Cho Y, Park C, Bhowmik A, et al. New overdrive technology for liquid-crystal displays with a simple architecture. Opt Eng. 2010;49(3):770–775.
  • Kim JW, Choi TH, Yoon TH, et al. Superfast low-temperature switching of nematic liquid, crystals using quasi-impulsive driving and overdrive. J Disp Technol. 2017;12(1):17–21.
  • Wu ST, Wu CS. Small angle relaxation of highly deformed nematic liquid crystals. Appl Phys Lett. 1988;53(19):1794–1796.
  • Sayyah K, Wu CS, Wu ST, et al. Anomalous liquid crystal undershoot effect resulting in a nematic liquid crystal‐based spatial light modulator with one millisecond response time. Appl Phys Lett. 1992;61(8):883–885.
  • Wen BC, Li J, Lin YQ, et al. A novel preparation method for γ-Fe2O3 nanoparticles and their characterization. Mater Chem Phys. 2011;128(1):35–38.
  • Zhang T, Meng XS, He ZH, et al. Preparation of magnetic nanoparticles via chemically induced transition: role of treating solution’s temperature. Nanomaterials. 2017;7(8):7080220.
  • Meng X, Qiu X, Zhao J, et al. Synthesis of ferrofluids using a chemically induced transition method and their characterization. Colloid Polym Sci. 2019;297(2):297–305.
  • Podoliak N, Buchnev O, Bavykin DV, et al. Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory. J Colloid Interf Sci. 2012;386(1):158–166.
  • Ye WJ, Yuan R, Dai YY, et al. Improvement of image sticking in liquid crystal display doped with γ-Fe2O3 nanoparticles. Nanomaterials. 2018;8(1):8010005.
  • Jiao MZ, Ge ZB, Song Q, et al. Alignment layer effects on thin liquid crystal cells. Appl Phys Lett. 2008;92(6):061102.
  • Garbovskiy Y. Time-dependent electrical properties of liquid crystal cells: unravelling the origin of ion generation. Liq Cryst. 2018;45(10):1540–1548.
  • Garbovskiy Y. Ions in liquid crystals doped with nanoparticles: conventional and counterintuitive temperature effects. Liq Cryst. 2017;44(9):1402–1408.
  • Garbovskiy Y. Adsorption/desorption of ions in liquid crystal nanocolloids: the applicability of the Langmuir isotherm, impact of high electric fields and effects of the nanoparticle’s size. Liq Cryst. 2016;43(6):853–860.
  • Soref RA. Field effects in nematic liquid crystals obtained with interdigital electrodes. J Appl Phys. 1974;45(12):5466–5468.
  • Wang H, Wu TX, Zhu X, et al. Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell. J Appl Phys. 2004;95(10):5502–5508.
  • Gauza S, Wen CH, Tan B, et al. 46.1: UV‐stable high‐birefringence low‐viscosity isothiocyaniane liquid crystals and application to 50‐μsec response switching device. SID Symp Dig Tech Pap. 2012;35(1):1304–1307.
  • Li J, Wu ST. Self-consistency of Vuks equations for liquid-crystal refractive indices. J Appl Phys. 2004;96(11):6253–6258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.