642
Views
23
CrossRef citations to date
0
Altmetric
Invited Article

Functional liquid crystalline particles and beyond

&
Pages 2023-2041 | Received 17 Jan 2019, Published online: 27 Jun 2019

References

  • Urbanski M, Reyes CG, Noh J, et al. Liquid crystals in micron-scale droplets, shells and fibers. J Phys Condens Matter. 2017;29:133003–133056.
  • Lagerwall JPF, Scalia G, Scalia G. A new era for liquid crystal research : applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12:1387–1412.
  • Finkelmann H. Liquid crystalline polymers. Angew Chem Int Ed Engl. 1987;26:816–824.
  • Zentel R. Liquid crystalline elastomers. Angew Chem Int Ed Engl. 1989;28:1407–1415.
  • Liu D, Broer DJ. Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment. Langmuir. 2014;30:13499–13509.
  • Naciri J, Srinivasan A, Jeon H, et al. Nematic elastomer fiber actuator. Macromolecules. 2003;36:8499–8505.
  • Yoshino T, Kondo M, Mamiya JI, et al. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv Mater. 2010;22:1361–1363.
  • Gelebart AH, Mc Bride M, Schenning APHJ, et al. Photoresponsive fiber array: toward mimicking the collective motion of cilia for transport applications. Adv Funct Mater. 2016;26:5322–5327.
  • Rešetič A, Milavec J, Zupančič B, et al. Polymer-dispersed liquid crystal elastomers. Nat Commun. 2016;7:13140.
  • Elias AL, Harris KD, Bastiaansen CWM, et al. Photopatterned liquid crystalline polymers for microactuators. J Mater Chem. 2006;16:2903–2912.
  • Ditter D, Chen W-L, Best A, et al. MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. J Mater Chem C. 2017;5:12635–12644.
  • Buguin A, Li MH, Silberzan P, et al. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J Am Chem Soc. 2006;128:1088–1089.
  • van Oosten CL, Bastiaansen CWM, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater. 2009;8:677–682.
  • Zeng H, Martella D, Wasylczyk P, et al. High-resolution 3d direct laser writing for liquid-crystalline elastomer microstructures. Adv Mater. 2014;26:2319–2322.
  • Selimis A, Mironov V, Farsari M. Direct laser writing: principles and materials for scaffold 3D printing. Microelectron Eng. 2015;132:83–89.
  • Zeng H, Wasylczyk P, Parmeggiani C, et al. Light-fueled microscopic walkers. Adv Mater. 2015;27:3883–3887.
  • Imamura K, Yoshida H, Ozaki M. Field strength and frequency tunable, two-way rotation of liquid crystal micro-particles dispersed in a liquid crystal host. Soft Matter. 2017;13:4433–4440.
  • Ohm C, Haberkorn N, Theato P, et al. Template-based fabrication of nanometer-scaled actuators from liquid-crystalline elastomers. Small. 2011;7:194–198.
  • Cairns DR, Shafran MS, Sierros KA, et al. Stimulus-responsive fluidic dispersions of rod shaped liquid crystal polymer colloids. Mater Lett. 2010;64:1133–1136.
  • Shafran M, Sierros K, Huebsch W, et al. Electrically switchable liquid crystal polymer rod actuators. Mater. Res. Soc. Symp. Proc.. 2011;1096:1096-FF03-07.
  • Vennes M, Martin S, Gisler T, et al. Anisotropic particles from LC polymers for optical manipulation. Macromolecules. 2006;39:8326–8333.
  • Haseloh S, Zentel R. Synthesis of liquid-crystalline colloids in nonpolar media and their manipulation in electric fields. Macromol Chem Phys. 2009;210:1394–1401.
  • Cairns DR, Sibulkin M, Crawford GP, et al. Switching dynamics of suspended mesogenic polymer microspheres. Appl Phys Lett. 2001;78:2643–2645.
  • Van Kuringen HPC, Mulder DJ, Beltran E, et al. Nanoporous polymer particles made by suspension polymerization: spontaneous symmetry breaking in hydrogen bonded smectic liquid crystalline droplets and high adsorption characteristics. Polym Chem. 2016;7:4712–4716.
  • Vennes M, Zentel R. Liquid-crystalline colloidal particles. Macromol Chem Phys. 2004;205:2303–2311.
  • Vennes BM, Zentel R, Rössle M, et al. Smectic liquid-crystalline colloids by miniemulsion techniques. Adv Mater. 2005;17:2123–2127.
  • Haseloh S, Ohm C, Smallwood F, et al. Nanosized shape-changing colloids from liquid crystalline elastomers. Macromol Rapid Commun. 2011;32:88–93.
  • Bera T, Freeman EJ, McDonough JA, et al. Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts. ACS Appl Mater Interfaces. 2015;7:14528–14535.
  • Ohm C, Serra C, Zentel R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater. 2009;21:4859–4862.
  • Hessberger T, Braun LB, Serra CA, et al. Microfluidic preparation of liquid crystalline elastomer actuators. J Vis Exp. 2018;135:e57715.
  • Wenzlik D, Ohm C, Serra C, et al. Preparation of cholesteric particles from cellulose derivatives in a microfluidic setup. Soft Matter. 2011;2340–2344.
  • Sharma A, Lagerwall JPF. Electrospun composite liquid crystal elastomer fibers. Materials (Basel). 2018;11:393–409.
  • Krause S, Dersch R, Wendorff JH, et al. Photocrosslinkable liquid crystal main-chain polymers: thin films and electrospinning. Macromol Rapid Commun. 2007;28:2062–2068.
  • Yang Z, Huck WTS, Clarke SM, et al. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nat Mater. 2005;4:486.
  • Ohm C, Kapernaum N, Nonnenmacher D, et al. Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J Am Chem Soc. 2011;133:5305–5311.
  • Fleischmann EK, Forst FR, Zentel R. Liquid-crystalline elastomer fibers prepared in a microfluidic device. Macromol Chem Phys. 2014;215:1004–1011.
  • Braun LB, Hessberger T, Pütz E, et al. Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. J Mater Chem C. 2018;6:9093–9101.
  • Ohm C, Fleischmann EK, Kraus I, et al. Control of the properties of micrometer-sized actuators from liquid crystalline elastomers prepared in a microfluidic setup. Adv Funct Mater. 2010;20:4314–4322.
  • Fleischmann EK, Liang HL, Kapernaum N, et al. One-piece micropumps from liquid crystalline core-shell particles. Nat Commun. 2012;3:1178.
  • Hessberger T, Braun LB, Henrich F, et al. Co-flow microfluidic synthesis of liquid crystalline actuating Janus particles. J Mater Chem C. 2016;4:8778–8786.
  • Brasselet E, Judokazis S. Optical angular manipulation of liquid crystal droplets in laser tweezers. J Nonlinear Opt Phys Mater. 2009;19:164–194.
  • Han DD, Zhang YL, Ma JN, et al. Light-mediated manufacture and manipulation of actuators. Adv Mater. 2016;28:8328–8343.
  • Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater. 2010;22:3366–3387.
  • Fleischmann EK, Ohm C, Serra C, et al. Preparation of soft microactuators in a continuous flow synthesis using a liquid-crystalline polymer crosslinker. Macromol Chem Phys. 2012;213:1871–1878.
  • Hessberger T, Braun L, Zentel R. Microfluidic synthesis of actuating microparticles from a thiol-ene based main-chain liquid crystalline elastomer. Polymers (Basel). 2016;8:410.
  • Braun LB, Hessberger T, Zentel R. Microfluidic synthesis of micrometer-sized photoresponsive actuators based on liquid crystalline elastomers †. J Mater Chem C. 2016;4:8670–8678.
  • Hessberger T, Braun LB, Zentel R. Interfacial self-assembly of amphiphilic dual temperature responsive actuating janus particles. Adv Funct Mater. 2018;1800629:1–10.
  • Torras N, Esteve J, Sánchez-Ferrer A, et al. Liquid-crystalline elastomer micropillar array for haptic actuation. Mater. Chem. C. 2013;1:5183.
  • Erhardt R, Böker A, Zettl H, et al. Janus micelles. Macromolecules. 2001;34:1069–1075.
  • Xu H, Erhardt R, Abetz V, et al. Janus micelles at the air/water interface. Langmuir. 2001;17:6787–6793.
  • Cayre O, Paunov VN, Velev OD. Fabrication of dipolar colloid particles by microcontact printing. Chem Commun. 2003;18:2296–2297.
  • Yu H, Liu H, Kobayashi T. Fabrication and photoresponse of supramolecular liquid crystalline microparticles. ACS Appl Mater Interfaces. 2011;3:1333–1340.
  • Thomsen DL, Keller P, Naciri J, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2001;34:5868–5875.
  • Fleischmann E-K, Zentel R. Flüssigkristalline Ordnung als Konzept in den Materialwissenschaften: von Halbleitern zu funktionalen Bauteilen. Angew. Chemie. 2013;125:8972–8991.
  • White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14:1087–1098.
  • Ahir SV, Tajbakhsh AR, Terentjev EM. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater. 2006;16:556–560.
  • Warner M, Terentjev EM. Liquid crystal elastomers. Vol. 120. Oxford University Press; 2007.
  • Wermter H, Finkelmann H. Liquid crystalline elastomers as artificial muscles. E-Polymers. 2001.
  • Brehmer M, Zentel R. Liquid crystalline elastomers- characterization as networks. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 1994;243:353–376.
  • Zentel R, Schmidt GF, Meyer J, et al. X-ray investigations of linear and cross-linked liquid-crystalline main chain and combined polymers. Liq Cryst. 1987;2:651–664.
  • Li M-H, Keller P. Artificial muscles based on liquid crystal elastomers. Philos. Trans. A. Math. Phys. Eng. Sci. 2006;364:2763–2777.
  • Zentel R, Reckert G, Bualek S, et al. Liquid-crystalline elastomers with cholesteric and chiral smectic C phases. Macromol Chem. 1989;190:2869–2884.
  • Kapitza H, Zentel R. Combined liquid-crystalline polymers with chiral phases, 2 Lateral substituents. Macromol Chem. 1988;189:1793–1807.
  • Ube T, Yoda T, Ikeda T. Fabrication of photomobile polymer materials with phase-separated structure of crosslinked azobenzene liquid-crystalline polymer and poly (dimethylsiloxane). Liq Cryst. 2018;45:2269–2273.
  • Wiesemann A, Zentel R, Pakula T. Redox-active liquid-crystalline ionomers: 1. Synthesis and rheology. Polymer (Guildf). 1992;33:5315–5320.
  • Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater. 2014;13:36–41.
  • Wang Z, Tian H, He Q, et al. Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds. ACS Appl Mater Interfaces. 2017;9:33119–33128.
  • Chambers M, Finkelmann H, Remškar M, et al. Liquid crystal elastomer–nanoparticle systems for actuation. J Mater Chem. 2009;19:1524–1531.
  • Braun LB, Linder T, Hessberger T, et al. Influence of a crosslinker containing an Azo group on the actuation properties of a photoactuating LCE system. Polymers (Basel). 2016;8:435.
  • Ikeda T, Mamiya JI, Yu Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chemie Int Ed. 2007;46:506–528.
  • Zeng H, Wani OM, Wasylczyk P, et al. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv Mater. 2017;29:1–7.
  • Küpfer J, Finkelrnann H. Nematic liquid single crystal elastomers. Makromol Chem Rapid Commun. 1991;12:717–726.
  • Bergmann GHF, Finkelmann H, Percec V, et al. Liquid-crystalline main-chain elastomers. Macromol Rapid Commun. 1997;18:353–360.
  • Li MH, Keller P, Yang J, et al. An artificial muscle with lamellar structure based on a nematic triblock copolymer. Adv Mater. 2004;16:1922–1925.
  • Brehmer M, Zentel R, Wagenblast G, et al. Ferroelectric liquid-crystalline elastomers. Macromol Chem Phys. 1994;195:1891–1904.
  • Beyer P, Terentjev EM, Zentel R. Monodomain liquid crystal main chain elastomers by photocrosslinking. Macromol Rapid Commun. 2007;28:1485–1490.
  • López-Valdeolivas M, Liu D, Broer DJ, et al. 4D printed actuators with soft-robotic functions. Macromol Rapid Commun. 2017;1700710:3–9.
  • Palagi S, Mark AG, Reigh SY, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater. 2016;15:1–8.
  • Poulin P, Weitz DA. Inverted and multiple nematic emulsions. Phys Rev E. 1998;57:626.
  • Lubensky TC, Pettey D, Currier N, et al. Topological defects and interactions in nematic emulsions. Phys Rev E. 1998;57:610.
  • Prishchepa OO, Zyryanov VY, Gardymova AP, et al. Optical textures and orientational structures of nematic and cholesteric droplets with heterogeneous boundary conditions. Mol Cryst Liq Cryst. 2008;489:84–93.
  • Lavrentovich OD. Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops. Liq Cryst. 1998;24:117–126.
  • Bates MA. Stabilising the tetrahedral defect configuration in nematic shells. Liq Cryst. 2018;45:2390–2399.
  • Haseloh S, Van Der Schoot P, Zentel R. Control of mesogen configuration in colloids of liquid crystalline polymers. Soft Matter. 2010;6:4112–4119.
  • Ondris-Crawford R, Boyko EP, Wagner BG, et al. Microscope textures of nematic droplets in polymer dispersed liquid crystals. J Appl Phys. 1991;69:6380–6386.
  • Drzaic PS. Polymer dispersed liquid crystals: a look back, a look ahead. Liq Cryst Today. 1995;5:2–4.
  • Golovataya NM, Kurik MV, Lavrentovich OD. Self-organization of polymer dispersed nematic droplets. Liq Cryst. 1990;7:287–291.
  • Fernández-Nieves A, Link DR, Márquez M, et al. Topological changes in bipolar nematic droplets under flow. Phys Rev Lett. 2007;98:87801.
  • Gupta JK, Sivakumar S, Caruso F, et al. Size-dependent ordering of liquid crystals observed in polymeric capsules with micrometer and smaller diameters. Angew Chemie Int Ed. 2009;121:1680–1683.
  • Sharma A, Lagerwall JPF. Influence of head group and chain length of surfactants used for stabilising liquid crystal shells. Liq Cryst. 2018;45:2319–2328.
  • Li MH, Keller P, Li B, et al. Light-driven side-on nematic elastomer actuators. Adv Mater. 2003;15:569–572.
  • Dey S, Agra-Kooijman D, Ren W, et al. Soft elasticity in main chain liquid crystal elastomers. Crystals. 2013;3:363–390.
  • Ohm C, Morys M, Forst FR, et al. Preparation of actuating fibres of oriented main-chain liquid crystalline elastomers by a wetspinning process. Soft Matter. 2011;7:3730–3734.
  • Fleischmann E-K, Forst FR, Köder K, et al. Microactuators from a main-chain liquid crystalline elastomer via thiol–ene “click” chemistry. J Mater Chem C. 2013;1:5885–5891.
  • Buyuktanir EA, Frey MW, West JL. Self-assembled, optically responsive nematic liquid crystal/polymer core-shell fibers: formation and characterization. Polymer (Guildf). 2010;51:4823–4830.
  • Kye Y, Kim C, Lagerwall J. Multifunctional responsive fibers produced by dual liquid crystal core electrospinning. J Mater Chem C. 2015;3:8979–8985.
  • Scalia G, Enz E, Calò O, et al. Morphology and core continuity of liquid-crystal-functionalized, coaxially electrospun fiber mats tuned via the polymer sheath solution. Macromol. Mater. Eng. 2013;298:583–589.
  • Steinhart M, Zimmermann S, Göring P, et al. Liquid crystalline nanowires in porous alumina: geometric confinement versus influence of pore walls. Nano Lett. 2005;5:429–434.
  • Xia Y, Lee E, Hu H, et al. Better actuation through chemistry: using surface coatings to create uniform director fields in nematic liquid crystal elastomers. ACS Appl Mater Interfaces. 2016;8:12466–12472.
  • Hong Y, Buguin A, Taulemesse JM, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J Am Chem Soc. 2009;131:15000–15004.
  • Liu X, Wei R, Hoang PT, et al. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv Funct Mater. 2015;25:3022–3032.
  • Wei R, Zhou L, He Y, et al. Effect of molecular parameters on thermomechanical behavior of side-on nematic liquid crystal elastomers. Polymer (Guildf). 2013;54:5321–5329.
  • Lv JA, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016;537:179–184.
  • Liu X, Kim S-K, Wang X. Thermomechanical liquid crystalline elastomer capillaries with biomimetic peristaltic crawling function. J Mater Chem B. 2016;4:7293–7302.
  • Yoshida H, Nakazawa G, Tagashira K, et al. Self-alignment behaviour of photopolymerized liquid crystal micro-particles in a nematic liquid crystal. Soft Matter. 2012;8:11323–11327.
  • Imamura K, Yoshida H, Ozaki M. Reversible switching of liquid crystal micro-particles in a nematic liquid crystal. Soft Matter. 2016;12:750–755.
  • Ditter D, Blümler P,  Klöckner B,  et al.  Microfluidic synthesis of liquid crystalline elastomer particle transport systems which can be remote‑controlled magnetically. Adv. Funct. Mater. 2019. DOI:10.1002/adfm.201902454
  • Bustamante C, Chemla YR, Moffitt JR. High-resolution dual-trap optical tweezers with differential detection: an introduction. Cold Spring Harb. Protoc. 2009:pdb–top60. DOI:10.1101/pdb.ip73
  • Fernµndez-Nieves BA, Cristobal G, Garcøs-Chuvez V, et al. Optically anisotropic colloids of controllable shape. Adv Mater. 2005;17:680–684.
  • Hao T. Electrorheological fluids: the non-aqueous suspensions.  Vol. 22. London & New York: Elsevier; 2011.
  • Kosc TZ, Marshall KL, Jacobs SD, et al. Electric-field-induced motion of polymer cholesteric liquid-crystal flakes in a moderately conductive fluid. Appl Opt. 2002;41:5362–5366.
  • Klöckner B, Daniel P, Brehmer M, et al. Liquid crystalline phases from polymer functionalized ferri-magnetic Fe3O4nanorods. J Mater Chem C. 2017;5:6688–6696.
  • Baun O, Blümler P. Permanent magnet system to guide superparamagnetic particles. J Magn Magn Mater. 2017;439:294–304.
  • Lee JH, Kamal T, Roth SV, et al. Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell. RSC Adv. 2014;4:40617–40625.
  • Imamura K, Yoshida H, Ozaki M. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration. Soft Matter. 2016;12:750–755.
  • Xu S, Nie Z, Seo M, et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chemie. 2005;117:734–738.
  • Jampani VSR, Mulder DJ, De Sousa KR, et al. Micrometer‐scale porous buckling shell actuators based on liquid crystal networks. Adv Funct Mater. 2018;28:1801209.
  • Schüring H, Stannarius R, Tolksdorf C, et al. Liquid crystal elastomer balloons. Macromolecules. 2001;34:3962–3972.
  • Stannarius R, Schüring H, Tolksdorf C, et al. Elastic properties of liquid crystal elastomer balloons. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2001;364:305–312.
  • Stannarius R, Aksenov V, Bläsing J, et al. Mechanical manipulation of molecular lattice parameters in smectic elastomers. Phys Chem Chem Phys. 2006;8:2293–2298.
  • Ube T, Ikeda T. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions. Angew Chem Int Ed Engl. 2014;53:10290–10299.
  • Braun LB, Hessberger T, Serra CA, et al. UV-free microfluidic particle fabrication at low temperature using ARGET-ATRP as the initiator system. Macromol. React. Eng. 2016;10:611–617.
  • Selinger RLB, Mbanga BL, Selinger JV. Modeling liquid crystal elastomers: actuators, pumps, and robots. Emerg. Liq. Cryst. Technol. III. 2008;6911:69110A-1–69110A-5.
  • Marshall JE, Gallagher S, Terentjev EM, et al. Anisotropic colloidal micromuscles from liquid crystal elastomers. J Am Chem Soc. 2014;136:474–479.
  • Camargo CJ, Campanella H, Marshall JE, et al. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays. J Micromech Microeng. 2012;22:75009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.