160
Views
5
CrossRef citations to date
0
Altmetric
Invited Article

Determination of the natural deuterium distribution of fatty acids by application of 2H 2D-NMR in liquid crystals: fundamentals, advances, around and beyond

ORCID Icon
Pages 1886-1910 | Received 20 Dec 2018, Published online: 03 Jun 2019

References

  • Remaud G. Recent development of NMR for isotope profiling. Eur Pharm Rev. 2014;9:46–49.
  • Martin G, Martin M-Y. Deuterium labelling at natural abundance level as studied by high field quantiative 2H NMR. Tetrahedron Lett. 1981;22:3525–3528.
  • Martin G, Zhang B-L, Naulet N, et al. Deuterium transfer in the bioconversion of glucose to ethanol studied by specific isotope labeling at the natural abundance level. J Am Chem Soc. 1986;108:5116–5122.
  • Martin GG, Wood R, Martin GJ. Detection of added beet sugar in concentrated and single strength fruit juices by deuterium nuclear magnetic resonance (SNIF-NMR) method: collaborative study. J AOAC Int. 1996;79:917–928.
  • Jamin E, Thomas F. SNIF-NMR applications in an economic context: fraud detection in food products. In: Webb GA, editor. Modern Magnetic Resonance. Cham: Springer International Publishing; 2017. p. 1–12.
  • Remaud GS, Martin Y-L, Martin GG, et al. Detection of sophisticated adulterations of natural vanilla flavors and extracts: application of the SNIF-NMR method to vanillin and p-hydroxybenzaldehyde. J Agric Food Chem. 1997;45:859–866.
  • Fronza G, Fuganti C. Natural abundance 2H nuclear magnetic resonance study of the origin of raspberry ketone. J Agric Food Chem. 1998;46:248–254.
  • Jézéquel T, Valentin Joubert V, Giraudeau P, et al. The new face of isotopic NMR at natural abundance. Magn Reson Chem. 2017;55:77–90.
  • Samulski E, Luz Z. (1932–2018). Liquid Crystals. 2019. DOI: 10.1080/02678292.2019.1555930
  • de Laeter JR, Böhlke JK, De Bièvre PH, et al. Atomic weights of the elements: review 2000 (IUPAC Technical Report). Pure Appl Chem. 2000;75:683–799.
  • Cordela C, Moussa I, Martel AC, et al. Recent developments in food characterization and adulteration detection: technique-oriented perspectives. J Agric Food Chem. 2002;50:1751–1764.
  • Zhang BL, Pionnier S. A simple method for the precise and simultaneous determination of primary and multiple secondary kinetic deuterium isotope effects in organic reactions at natural abundance. J Phys Org Chem. 2001;14:239–246.
  • Zhang BL, Martin ML. Site-specific isotope fractionation in the characterization of biochemical mechanisms. The glycolytic pathway. J Biol Chem. 1995;270:16023–16029.
  • Zhang BL, Stephan B, Martin ML. Site-specific hydrogen isotope fractionation in the biosynthesis of glycerol. Bioorg Chem. 2000;28:1–15.
  • Pionnier S, Robins R, Zhang BL. Natural abundance hydrogen isotope affiliation between the reactants and the products in glucose fermentation with yeast. J Agr Food Chem. 2003;51:2076–2082.
  • Zhou YP, Zhang BL, Stuart-Williams H, et al. On the contributions of photorespiration and compartmentation to the contrasting intramolecular 2H profiles of C3 and C4 plant sugars. Phytochemistry. 2018;145:197–206.
  • Legrand F, Rémaud G, Akoka S. Natural abundance 2H-ERECTIC NMR authentication of the origin of methyl salicylate. J Agric Food Chem. 2005;53:5125–5129.
  • Martin ML, Martin GJ. Deuterium NMR in the study of site-specific natural isotope fractionation. In: Diehl P, Fluck E, Gunther H, et al. editors. (SNIF-NMR) in NMR basic principles and progress. Vol. 23. Berlin: Springer Verlag; 1991. p. 1–61.
  • Hagedorn ML. Differentiation of natural and synthetic benzaldehydes by 2H nuclear magnetic resonance. J Agric Food Chem. 1992;40:634–637.
  • Remaud GS, Martin Y-L, Martin GG, et al. Authentication of mustard oils by combined stable isotope analysis (SNIF-NMR and IRMS). J Agric Food Chem. 1997;45:1844–1848.
  • Gonzalez J, Jamin E, Martin Y-L, et al. Authentication of lemon juices and concentrates by a combined multi-isotope approach using SNIF-NMR and IRMS. J Agric Food Chem. 1998;46:2200–2205.
  • Tenailleau E, Lancelin P, Robins RJ, et al. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR. J Agric Food Chem. 2004;52:7782–7787.
  • Remaud GS, Akoka S. A review of flavors authentication by position specific isotope analysis by nuclear magnetic resonance spectrometry: the example of vanillin. Flav Frag J. 2016;32:77–84.
  • Texier-Bonniot T, Berdagué P, Robins R, et al. Analytical contribution of deuterium 2D-NMR in oriented solvents to 2H/1H isotopic characterization: the case of vanillin. Flav Frag J. 2018;34:217–229.
  • Billault I, Guiet S, Mabon F, et al. Natural deuterium distribution in long-chain fatty acids is nonstatistical: a site-specific study by quantitative 2H NMR spectroscopy. ChemBioChem. 2001;2:425–431.
  • Lesot P, Aroulanda C, Billault I. Exploring the analytical potential of NMR spectroscopy in chiral anisotropic media for the study of the natural abundance deuterium distribution in organic molecules. Anal Chem. 2004;76:2827–2835.
  • Emsley JW, Lindon JC. NMR spectroscopy using liquid crystal solvents. Oxford: Pergamon Press; 1975.
  • Sarfati M, Lesot P, Merlet D, et al. Theoretical and experimental aspects of enantiomeric differentiation using natural abundance multinuclear NMR spectroscopy in polypeptide liquid crystals. Chem Commun. 2000;21:2069–2081.
  • Lesot P, Sarfati M, Courtieu J. Natural abundance deuterium NMR spectroscopy in polypeptide liquid crystals as a new and incisive means for enantiodifferentiation of chiral hydrocarbons. Chem Eur J. 2003;9:1724–1745.
  • Lesot P, Courtieu J. Natural abundance deuterium NMR spectroscopy: developments and analytical applications in liquids, liquid crystals and solid phases. Prog Nucl Magn Reson Spectrosc. 2009;55:128–159.
  • Lesot P. Deuterium NMR of Liquid-crystalline samples at natural abundance. Encycl Magn Reson (Emagres). 2013;2:315–334. J Wiley: Chichester, Ed. Harris RK.
  • Lesot P, Berdagué P, Meddour A, et al. 2H and 13C NMR-based enantiodetection using polyacetylene versus polypeptide aligning media: versatile and complementary tools for chemists. ChemPlusChem. 2019. DOI:10.1002/cplu.201800493
  • Briggs JM, Farnell LF, Randall EW. Proton-noise-decoupled deuterium resonance at natural abundance by Fourier-transform. Chem Commun. 1973;3:70–71.
  • Khetrapal CL, Ramanathan KV, Suryaprakash N, et al. Natural abundance 2H NMR spectra of molecules oriented in liquid crystals. J Magn Reson. 1998;135:265–266.
  • Lesot P, Merlet D, Loewenstein A, et al. Enantiomeric visualisation using proton-decoupled natural abundance deuterium NMR in poly-γ-benzyl-L-glutamate liquid crystalline solutions. Tetrahedron: Asym. 1998;9:1871–1881.
  • Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes, a leap in NMR technology. Prog Nucl Magn Reson Spectrosc. 2005;45:131–155.
  • Eliel EE, Wilen SH. in Stereochemistry of Organic Compounds. New York (NY): J. Wiley & Sons, INC; 1994.
  • Rothchild R. NMR methods for determination of enantiomeric excess. Enantiomer. 2000;5:457–471.
  • Wenzel TJ. Discrimination of chiral compounds using NMR spectroscopy. Hoboken (NJ): J. Wiley & Sons; 2007.
  • Wenzel T, Chisholm CD. Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry. Prog Nucl Magn Reson Spectrosc. 2011;59:1–63.
  • Lesot P, Aroulanda C, Zimmermann H, et al. Enantiotopic discrimination in the NMR spectrum of prochiral solutes in chiral liquid crystals. Chem Soc Rev. 2015;44:230–275.
  • Meddour A, Canet I, Loewenstein A, et al. Observation of enantiomers, chiral by virtue of isotopic substitution, through deuterium NMR in a polypeptide liquid crystal. J Am Chem Soc. 1994;116:9652–9656.
  • Aroulanda A, Merlet D, Courtieu J, et al. NMR experimental evidence of the differentiation of enantiotopic directions in Cs and C2v molecules using partially oriented, chiral media. J Am Chem Soc. 2004;123:12059–12066.
  • Merlet D, Emsley JW, Lesot P, et al. The relationship between molecular symmetry and second-rank orientational order parameters for molecules in chiral liquid crystalline solvents. J Chem Phys. 1999;111:6890–6896.
  • Lafon O, Lesot P, Zimmermann H, et al. Chiral discrimination in the 13C- and 2H-NMR of the crown and saddle isomers of nonamethoxy-cyclotriveratrylene in chiral liquid-crystalline solutions. J Phys Chem B. 2007;111:9453–9467.
  • Lesot P, Aroulanda C, Luz Z. Analysis of the enantiotopic discrimination in the NMR spectra of prochiral solutes dissolved in chiral liquid crystals by symmetry factorization of the saupe ordering matrix. J Chem Phys. 2009;131:104501/1–16.
  • Merlet D, Ancian B, Courtieu J, et al. Two-dimensional deuterium NMR spectroscopy of chiral molecules oriented in a polypeptide liquid crystal: application for the enantiomeric analysis through natural abundance deuterium NMR. J Am Chem Soc. 1999;121:5249–5258.
  • Lafon O, Lesot P, Merlet D, et al. Modified z-gradient filtering as a new mean to obtain phased deuterium autocorrelation 2D-NMR spectra in oriented solvents. J Magn Reson. 2004;171:135–142.
  • Lesot P, Lafon O. Enantiomeric Analysis using natural abundance deuterium 3D-NMR spectroscopy in polypeptide chiral oriented media. Chem Phys Lett. 2004;458:219–222.
  • Lesot P, Lafon O. Experimental detection of achiral and chiral naturally abundant 13C-2H isotopomers by 2D-NMR in liquids and chiral oriented solvents. Anal Chem. 2004;84:4569–4573.
  • Aroulanda C, Sarfati M, Courtieu J, et al. investigation of enantioselectivity of three polypeptide liquid-crystalline solvents using NMR spectroscopy. Enantiomer. 2001;6:281–287.
  • Lesot P, Lafon O, Aroulanda C, et al. 2H NMR studies of two-homopolypeptide lyotropic mesophases: toward the quantification of solute-fiber interactions. Chem Eur J. 2008;14:4082–4092.
  • Masarwa A, Gerbig D, Oskar L, et al. Probing the limits of NMR and VCD spectroscopy in the stereochemical assignment of chiral 2H6-neopentane. Angew Chem Int Ed. 2015;54:13106–13109.
  • Arnold L, Marx A, Thiele C-M, et al. Polyguanidines as chiral orienting media for organic compounds. Chem Eur J. 2010;16:10342–10346.
  • Li GW, Cao JM, Zong W, et al. helical polyisocyanopeptides as lyotropic liquid crystals for measuring residual dipolar couplings. Chem Eur J. 2017;23:7653–7656.
  • Reller M, Wesp S, Koos MRM, et al. Biphasic liquid crystal and the simultaneous measurement of isotropic and anisotropic parameters by spatially resolved NMR spectroscopy. Chem Eur J. 2017;23:13351–13359.
  • Meyer N-C, Krupp A, Schmidts V, et al. Polyacetylenes as enantiodifferentiating alignment media. Angew Chem Int Ed. 2012;51:8334–8338.
  • Burr GO, Burr MM, Miller E. On the nature and role of the fatty acids essential in nutrition. J Biol Chem. 1930;86:587–621.
  • Stryer L. Biochemistry (4th Ed.), Chap. “Fatty acid metabolism”. New York (NY): Freeman W.H. and Company; 1995.
  • Moss GP, Smith PAS, Tavernier D. IUPAC compendium of chemical terminology. Pure and applied chemistry. Vol. 67. 2nd ed. International Union of Pure & Applied Chemistry; 1997. p. 1307–1375.
  • Altmann SI. The summary of nonrigid molecules: the Schrödinger supergroup. Proc Roy Soc (London). 1967;A298:184–203.
  • Lesot P, Baillif V, Billault I. Combined analysis of four C-18 unsaturated fatty acids using natural abundance deuterium 2D-NMR spectroscopy in chiral oriented solvents. Anal Chem. 2008;80:2963–2972.
  • Canlet C, Merlet D, Lesot P, et al. Deuterium NMR stereochemical analysis of threo–erythro isomers bearing remote stereogenic centres in racemic and non-racemic liquid crystalline solvents. Tetrahedron: Asym. 2000;11:1911–1918.
  • Berger R, Courtieu J, Gil RR, et al. Is the determination of absolute configuration possible by using residual dipolar couplings from chiral non-racemic alignment media?- a critical assessment. Angew Chem Int Ed. 2012;51:2–5.
  • Lesot P, Lafon O, Courtieu J, et al. Analysis of the 13C NMR spectra of molecules, chiral by isotopic substitution, dissolved in a chiral oriented evironment: toward the absolute assignment of the pro-R/pro-S character enantiotopic ligands in prochiral molecules. Chem Eur J. 2004;10:3741–3746.
  • Ziani L, Lesot P, Meddour A, et al. Empirical determination of the absolute configuration of small chiral molecules using natural abundance 2H NMR in chiral liquid crystals. Chem Commun. 2007;45:4737–4739.
  • Baillif V, Billault I, Robins RJ, et al. Assignment of absolute configuration of natural abundance deuterium signals associated with (R)- and (S)-enantioisotopomers in a fatty acid aligned in a chiral liquid crystal: enantioselective synthesis and NMR analysis. J Am Chem Soc. 2006;128:11180–11187.
  • Serhan Z, Billault I, Lesot P. Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural abundance 2H NMR spectroscopy: application on conjugated linolenic methyl esters. Anal Bioanal Chem. 2011;399:1187–1200.
  • Serhan Z, Martel L, Billault I, et al. Complete determination of site specific bio-enantiomeric excesses in linoleic acid using natural abundance deuterium 2D-NMR in polypeptide mesophase. Chem Commun. 2010;46:6599–6601.
  • Baillif V, Robins RJ, Le Feunten S, et al. Investigation of fatty acid elongation and desaturation steps in fusarium lateritium by quantitative two-dimensional deuterium NMR spectroscopy in chiral oriented media. J Biol Chem. 2009;284:10783–10792.
  • Cahn RS, Inglod CK, Prelog V. The specification of asymmetric configuration in organic chemistry. Experientia. 1956;12:81–94.
  • Reed DW, Savile CK, Qiu X, et al. Mechanism of 1,4-dehydrogenation catalyzed by a fatty acid (1,4)-desaturase of Calendula officinalis. Eur J Biochem. 2002;269:5024–5029.
  • Serhan Z, Billault I, Borgogno A, et al. Analysis of NAD 2D-NMR spectra of saturated fatty acids in polypeptide aligning media by experimental and modeling approaches. Chem Eur J. 2012;18:117–126.
  • Zweckstetter M, Bax A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc. 2000;122:3791–3792.
  • Fernandes MX, Bernado P, Pons M, et al. An analytical solution to the problem of the orientation of rigid particles by planar obstacles. Application to membrane systems and to the calculation of dipolar couplings in protein NMR spectroscopy. J Am Chem Soc. 2001;123:12037–12047.
  • Abe A, Yamazaki T. Orientational order of alpha-helical poly(gamma-benzyl-glutamate) in the lyotropic liquid-crystalline state - comparison of theory with experiments. Macromol. 1989;22:2138–2145.
  • Flory PJ. Statistical mechanics of chain molecules. New York (NY); Wiley (Interscience); 1969.
  • Ferrarini A. Modeling of macromolecular alignment in nematic virus suspensions. Application to the prediction of NMR residual dipolar couplings. J Phys Chem B. 2003;107:7923–7931.
  • Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–1092.
  • Louhivuori M, Pääkkönen K, Fredriksson K, et al. On the origin of residual dipolar couplings from denatured proteins. J Am Chem Soc. 2003;125:15647–15650.
  • Obolensky OI, Schlepckow K, Schwalbe H, et al. Theoretical framework for NMR residual dipolar couplings in unfolded proteins. J Biomol NMR. 2007;39:1–16.
  • Lesot P, Serhan Z, Aroulanda C, et al. Analytical contribution of NAD 2D-NMR spectroscopy in polypeptide mesophases to the investigation of triglycerides. Magn Reson Chem. 2012;50:S2–S11, and corrigendum, idem, 2013;51:444.
  • Robins R, Billault I, Duan J-R, et al. Measurement of 2H distribution in natural products by quantitative 2H NMR: an approach to understanding metabolism and enzyme mechanism? Phytochem Rev. 2003;2:87–102.
  • Schmidt H-L, Werner R, Eisenreich W. Bio-organic chemistry of plant lipid desaturation. Phytochem Rev. 2003;2:61–85.
  • Billault I, Ledru A, Ouetrani M, et al. Probing substrate-product relationships by natural abundance deuterium 2D-NMR spectroscopy in liquid-crystalline solvents: the case of the epoxidation of linoleate to vernoleate by two different plant enzymes. Anal Bioanal Chem. 2012;402:2985–2998.
  • Blée E, Stahl U, Schuber F, et al. Regio- and stereo-electivity of cytochrome P-450 and peroxygenase dependent formation of cis-12,13-epoxy-9(Z)-octadecenoic acid (vernolic acid) in Euphorbia lagascae. Biochem Biophys Res Commun. 1993;197:778–784.
  • Lee M, Lenman M, Banas A, et al. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science. 1998;280:915–918.
  • Berdagué P, Lesot P, Jacob J, et al. Contribution of NAD 2D-NMR in liquid crystals to the determination of hydrogen isotope profile of methyl groups in Miliacin. Geochim Cosmochim Acta. 2016;173:337–351.
  • Lafon O, Bingwen H, Amoureux J-P, et al. Fast and high-resolution stereochemical analysis by non-uniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets. Chem Eur J. 2011;17:6716–6724.
  • Kazimierczuk K, Lafon O, Lesot P. Criteria for sensitivity enhancement by compressed sensing: practical application to anisotropic NAD 2D-NMR spectroscopy. Analyst. 2014;139:2702–2713.
  • Bostock M, Nietlispach D. Compressed sensing: reconstruction of non-uniformly sampled multidimensional NMR data. Concepts Magn Reson. 2017;46A:1–19. Special Issue, Article Number: e21438.
  • Kazimierczuk K. Compressed sampling in NMR spectroscopy. eMagRes. 2018;7:1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.