275
Views
1
CrossRef citations to date
0
Altmetric
Invited Article

NMR of cellulose nanocrystals, mesoporous media, and liquid crystal assemblies

Pages 1911-1925 | Received 08 Feb 2019, Published online: 08 May 2019

References

  • Mariano M, Kissi NE, Dufresne A. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B. 2014;52:791–806.
  • Godinho MH, Gray DG, Pieranski P. Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system. Liq Cryst. 2017;44(12–13):2108–2120.
  • Canejo JP, Fernandes SN, Godinho MH, et al. Liquid fibres and their networks from cellulose-based liquid crystalline solutions. Liq Cryst. 2018;45(13–15):1987–1995.
  • Šturcová A, His I, Apperley DC, et al. Structural details of crystalline cellulose from higher plants. Biomacromolecules. 2004;5:1333–1339.
  • Rånby BG. Macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc. 1951;11:158–164.
  • Rånby BG. Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand. 1949;3:649–650.
  • Iwamoto S, Kai W, Isogai A, et al. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microcopy. Biomacromol. 2009;10:2571–2576.
  • Marchessault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillary polysccharides. Nature. 1959;184:632–635.
  • Revol J-F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992;14:170–172.
  • Kresge CT, Leonowicz ME, Roth WJ, et al. Ordered mesoporous molecular seves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–712.
  • Beck JS, Vartuli JC, Roth WJ, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–10843.
  • Hamley IW. Liquid crystal phase formation by biopolymers. Soft Matter. 2010;6:1863–1871.
  • Werbowyj RS, Gray DG. Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol Cryst Liq Cryst. 1976;34:97–103.
  • Lagerwall JPF, Schütz C, Salajkova M, et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014;6:e80.
  • Li J, Revol J-F, Marchessault RH. Effect of degree of deacetylation of chitin on the properties of chitin crystallites. J Appl Polym Sci. 1997;65:373–378.
  • Giese M, Blusch LK, Khan MK, et al. Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed. 2015;54:2888–2910.
  • Meseck GR, Terpstra AS, MacLachlan MJ. Liquid crystal templating of nanomaterials with nature‘s toolbox. Curr Opin Colloid Interface Sci. 2017;29:9–20.
  • Shopsowitz KE, Qi H, Hamad WY, et al. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature. 2010;468:422–425.
  • Revol JF, Godbout L, Gray DG. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci. 1998;24:146–149.
  • Shopsowitz KE, Hamad WY, MacLachlan MJ. Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed. 2011;50:10991–10995.
  • Meseck GR, Terpstra AS, Marenco AR, et al. Chiral nematic mesoporous magnetic ferrites. J Mater Chem C. 2016;4:11382–11386.
  • Chu G, Xu W, Qu D, et al. Chiral nematic mesoporous films of Y2O3: Eu3+with tunable optical properties and modulated photoluminescence. J Mater Chem C. 2014;2:9189–9195.
  • Czaja AU, Trukhan N, Muller U. Industrial applications of metal-organic frame works. Chem Soc Rev. 2009;38:1284–1293.
  • Morris RE, Wheatley PS. Gas storage in nanoporous materials. Angew Chem Int Ed. 2008;47:4966–4981.
  • Liu Q, Tang Z, Ou B, et al. Design, preparation, and application of ordered porous polymer materials. Mater Chem Phys. 2014;144:213–225.
  • Wang Y, Zhao Q, Han N, et al. Mesoporus silica nanoparticles in drug delivery and biomedical applications. Nanomed. 2015;11:313.
  • De Vries H. Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr. 1951;4:219–226.
  • Dong XM, Kimura T, Revol J-F, et al. Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir. 1996;12:2076–2082.
  • Ohashi R, Michal CA, Hamad WY, et al. Solid-state 23Na NMR spectroscopy studies of ordered and disordered cellulose nanocrystal films. Solid State Nucl Magn Reson. 2019. DOI:10.1016/j.ssnmr.2018.12.001
  • Shopsowitz KE, Hamad WY, MacLachlan MJ. Flexible and iridescent chiral nematic mesoporous organosilica films. J Am Chem Soc. 2012;134:867–870.
  • Foster EJ, Moon, RJ, Agarwal UP, et al. Current characterization methods for cellulose nanomaterials. Chem Soc Rev. 2018;47:2609–2679.
  • Lemke CH, Dong RY, Michal CA, et al. New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose. 2012;19:1619–1629.
  • Revol JF, Godbout L, Dong X, et al. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst. 1994;16:127–134.
  • Kitzerow HS, Lorenz A, Matthias H. Tuneable photonic crystals obtained by liquid crystal infiltration. nanophotonic materials. Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 221–237.
  • Kitzerow HS. HS, Lorenz A, Matthias H. Phys Status Solidi A. 2007;204:3754–3767.
  • Giese M, De Witt JC, Shopsowitz KE, et al. Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. ACS Appl Mater Interfaces. 2013;5:6854–6859.
  • Manning AP, Giese M, Terpstra AS et al. NMR of guest-host systems: 8CB in chiral nematic porous glasses. Magn Reson Chem. 2014;52:532–539.
  • Giese M, Krappitz T, Dong RY, et al. Tuning the photonic properties of chiral nematic mesoporous organosilica with hydrogen-bonded liquid-crystalline assemblies. J Mater Chem C. 2015;3:1537–1545.
  • Spengler M, Dong RY, Michal CA, et al. Fluorination of supramolecular liquid crystals – tuning tool and analytical probe. J Mater Chem C. 2017;5:2235–2239.
  • Spengler M, Dong RY, Michal CA, et al. Hydrogen-bonded liquid crystals in confined spaces – toward photonic hybrid materials. Adv Funct Mater. 2018;28:1800207–1800210.
  • Kawano S-I, Ishida Y, Tanaka KJ. Columnar liquid-crystalline metallomacrocycles. Am Chem Soc. 2015;137:2295–2302.
  • Jiang J, Dong RY, MacLachlan MJ. Lyotropic liquid crystallinity in mixed-tautomer Schiff-base macrocycles. Chem Commun. 2015;51:16205–16208.
  • Goldfarb D, Dong RY, Luz Z, et al. Deuterium NMR relaxation and spectral densities in the discotic mesophase of hexahexyloxytriphenylene. Mol Phys. 1985;54:1185–1202.
  • Lee JH, Han M-J, Hwang SH, et al. Self-assembled discotic liquid crystals formed by hydrogen bonding of alkoxystilbazoles. Tetrahedron Lett. 2005;46:7143–7146.
  • Ricci M, Berardi R, Zannoni C. Columnar liquid crystals formed by bowl-shaped mesogens. A Monte Carlo study. Soft Matter. 2008;4:2030–2038.
  • Yoshizawa A. Material design for blue phase liquid crystals and their electro-optical effects. RSC Adv. 2013;3:25475–25497.
  • Yoshizawa A. Molecular design of flexible liquid crystal oligomers stabilising the chiral frustrated phases. Liq Cryst. 2017;44:1877–1893.
  • Meiboom S, Sethna JP, Anderson PW, et al. Theory of the blue phase of cholesteric liquid crystals. Phys Rev Lett. 1981;46:1216–1219.
  • Tanaka S, Yoshida H, Kawata Y, et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy. Sci Rep. 2015;5:16180–16189.
  • Collings PJ, McColl JR. Nuclear magnetic resonance spectroscopy in cholesteric liquid crystals. II. The blue phase. J Chem Phys. 1978;69:3371–3373.
  • Meiboom S, Sammon M. Structure of the blue phase of a cholesteric liquid crystal. Phys Rev Lett. 1980;44:882–885.
  • Samulski ET, Luz Z. On the blue phase of cholesterogenic liquid crystals. A deuterium NMR study. J Chem Phys. 1980;73:142–147.
  • Luz Z, Poupko R, Samulski ET. Deuterium NMR and molecular ordering in the cholesteryl alkanoates mesophases. J Chem Phys. 1981;74:5825–5837.
  • H J C, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436:997–1000.
  • He W, Pan G, Yang Z, et al. Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative. Adv Mater. 2009;21:2050–2053.
  • Saccone M., Pfletscher M., Dautzenberg E, et al. Hydrogen-bonded liquid crystals with broad-range blue phases. J Mater Chem C. 2019. DOI:10.1039/c8tc06428h.
  • Dong RY, Michal CA, Saccone M, et al. On the blue phase structure of hydrogen-bonded liquid crystals via 19F NMR. Chem Phys Lett. 2018;710:39–44.
  • Miller RJ, Gleeson HF. Order parameter measurements from the Kossel diagrams of the liquid-crystal blue phases. Phys Rev E. 1995;52:5011–5016.
  • Ranjkesh A., Cvetko M, Choi JC, et al. Phase and structural order in mixture of nematic liquid crystals and anisotropic nanoparticles. Phase Transitions. 2017;90:423–438.
  • McConnell HM. Reaction rates by nuclear magnetic resonance. J Chem Phys. 1958;28:430–431.
  • Abragam A. Principles of nuclear magnetism. Oxford, UK: Oxford University Press; 1962.
  • Finotello D, Iannacchione GS, Qian S. Phase transitions in restricted geometries. In: Crawford GP, Žumer S, editors. Liquid crystals in complex geometries formed by polymer and porous networks. London, UK: Taylor and Francis; 1996. p. 325–343.
  • Wittebrood MM, Luijendijk DH, Stallinga J, et al. Thickness-dependent phase transition in thin nematic films. Phys Rev E. 1996;54:5232–5234.
  • Ondris-Crawford RJ, Crawford GP, Doane JW, et al. Surface molecular anchoring in microconfined liquid crystals near the nematic – smectic-A transition. Phys Rev E. 1993;48:1998–2005.
  • Terpstra AS, Arnett LP, Manning AP, et al. Iridescent chiral nematic mesoporous organosilicas with alkylene spacers. Adv Optical Mater. 2018;6:1800163.
  • Mitchell J, Webber J, Strange J. Nuclear magnetic resonance cryoporometry. Phys Rep. 2008;461:1–36.
  • Iannacchione GS, Crawford GP, Žumer S, et al. Randomly constrained orientational order in porous glass. Phys Rev Lett. 1993;71:2595–2598.
  • Iannacchione GS, Qian S, Crawford GP, et al. A liquid crystal order in a highly restrictive glass. Mol Cryst Liq Cryst Sci Technol Sect A. 1995;262:13–23.
  • Iannacchione GS, Crawford GP, Qian S, et al. Nematic ordering in highly restrictive Vycor glass. Phys Rev E. 1996;53:2402–2411.
  • Iannacchione GS, Qian S, Doane JW, et al. Liquid crystalline behavior of octylcyanobiphenyl confined to submicron-size randomly connected porous glasses. Phys Rev E. 1997;56:554–561.
  • Domenici V, Veracini CA, Novotná V, et al. Twist grain boundary liquid-crystalline phases under the effect of the magnetic field: a complete 2H and 13C NMR study. ChemPhysChem. 2008;9:556–566.
  • Domenici V, Veracini CA, Hamplova V, et al. Supra-molecular structure of TGBC* phases studied by means of deuterium NMR line-shape analysis. Mol Cryst Liq Cryst. 2008;495:133–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.