347
Views
3
CrossRef citations to date
0
Altmetric
Article

Design of filtering tunable liquid crystal phase shifter based on coplanar waveguide and split-ring resonators

ORCID Icon, , , , , & show all
Pages 2127-2133 | Received 26 Mar 2019, Accepted 28 Apr 2019, Published online: 21 May 2019

References

  • Garbovskiy Y, Zagorodnii V, Krivosik P, et al. Liquid crystal phase shifters at millimeter wave frequencies. J Appl Phys. 2012;111:054504.
  • Jiang D, Xu H, Pivnenko M, et al. Compact phase shifter based on highly anisotropic liquid crystals for microwave frequency. Electron Lett. 2014;50:525–526.
  • Jost M, Weickhmann C, Strunck S, et al. Liquid crystal based low-loss phase shifter for W-band frequencies. Electron Lett. 2013;49:1460–1462.
  • Nose T, Chien LC, Catanescu O, et al. Improved high-frequency performance of microstrip-line-type liquid crystal phase shifter. Jpn J Appl Phys. 2013;52:091701.
  • Utsumi Y, Bach NT, Kamei T, et al. Comparison of microwave measurements and theoretical calculations of dielectric birefringence for a liquid crystal loaded CPW-FE phase shifter. Mol Cryst Liquid Cryst. 2009;510:1331–1347.
  • Utsumi Y, Kamei T, Maeda T, et al. Microwave high-speed liquid crystal devices using CPW with floating electrode. Mol Cryst Liquid Cryst. 2007;476:249–259.
  • Prasetiadi AE, Rahmawati S, Weickhmann C, et al. Electrical biasing scheme for liquid-crystal-based tunable substrate integrated waveguide structures. Ger Microwave Conf (Gemic). 2016;136:136–139.
  • Strunck S, Gaebler A, Karabey OH, et al. Reliability study of a tunable Ka-band SIW-phase shifter based on liquid crystal in LTCC-technology. Int J Microw Wirel Technol. 2015;7:1–7.
  • Franc AL, Karabey OH, Rehder G, et al. Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology. IEEE Trans Microw Theory Technol. 2013;61:3905–3915.
  • Matthias J, Gautam JSK, Gomes LG, et al. Miniaturized liquid crystal slow wave phase shifter based on nanowire filled membranes. IEEE Microw Wirel Compon Lett. 2018;28:1–3.
  • Yupeng L, Di J, Lei X, et al. A novel microwave tunable band-pass filter integrated power divider based on liquid crystal. Int J Antennas Propag. 2015;215:1–6.
  • Liu Y, Yang L, Haiyan L, et al. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal. Rev Sci Instrum. 2016;87:678–679.
  • Yupeng L, Di J, Cao W, et al. Microwave tunable split ring resonator bandpass filter using nematic liquid crystal materials. Optik. 2016;127:10216–10222.
  • Che BJ, Meng FY, Lyu YL. Reconfigurable dual-band metamaterial antenna based on liquid crystals. J Phys D Appl Phys. 2018;51:185102.
  • Ma S, Zhang SQ, Ma LQ. Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal. IET Microw Antenna Propag. 2018;12:1140–1146.
  • Che BJ, Jin T, Erni D, et al. Electrically controllable composite right/left-handed leaky-wave antenna using liquid crystals in PCB technology. IEEE Trans Compon Packaging Manuf Technol. 2017;7:1243–1255.
  • Ma S, Meng FY, Lyu YL, et al. Liquid crystal leaky-wave antennas with dispersion sensitivity enhancement. IEEE Trans Compon Packaging Manuf Technol. 2017;7:792–802.
  • Shi HY, Li JX, Zhu ST, et al. Radiation pattern reconfigurable waveguide slot array antenna using liquid crystal. Int J Antennas Propag. 2018;18:2164065.
  • Karabey OH. Electronic beam steering and polarization agile planar antennas in liquid crystal technology. Springer Science & Business Media; 2013.
  • Baena JD, Bonache J, Martin F, et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microw Theory Technol. 2015;53:1451–1461.
  • Martın F, Bonache J, Falcone FA, et al. Split ring resonator-based left-handed coplanar waveguide. Appl Phys Lett. 2003;83:4652–4654.
  • Nose T, Ito T, Ito R, et al. Basic performance of rectangular waveguide type liquid crystal phase shifter driven by magnetic field. IEEE Int Conf Infrared Millimeter Terahertz Waves (Irmmw-Thz). 2018;5:11–12.
  • Wang K, Wu K. Liquid crystal enabled substrate integrated waveguide variable phase shifter for millimeter-wave application at 60ghz and beyond. IEEE Microwave Symp. 2015;16:873–877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.