172
Views
2
CrossRef citations to date
0
Altmetric
Article

Polar anchoring strengths of nematic liquid crystal on high-density polymer brush surfaces

, &
Pages 1881-1888 | Received 04 Apr 2019, Accepted 28 Apr 2019, Published online: 23 May 2019

References

  • Oh-E M, Kondo K. Electro-optical characteristics and switching behavior of the in-plane switching mode. Appl Phys Lett. 1995;67:3895–3897.
  • Oh-E M, Kondo K. Response mechanism of nematic liquid crystals using the in-plane switching mode. Appl Phys Lett. 1996;69:623–625.
  • Oh-E M, Kondo K. The in-plane switching of homogeneously aligned nematic liquid crystals. Liq Cryst. 1997;22:379–390.
  • Oh-E M. In-plane switching electro-optical effect of nematic liquid crystals. Liq Cryst Today. 2001;10:6–10.
  • Sato O, Iwata N, Kawamura J, et al. An in-plane switching liquid crystal cell with weakly anchored liquid crystals on the electrode substrate. J Mater Chem C. 2017;5:4384–4387.
  • Sato O, Kasai T, Sato M, et al. High-density poly(hexyl methacrylate) brushes offering a surface for near-zero azimuthal anchoring of liquid crystals at room temperature. J Mater Chem C. 2013;1:7992–7995.
  • Sato O, Iwata N, Kasai T, et al. Nematic liquid crystal anchoring strengths of high density polymer brush surfaces. Liq Cryst. 2015;42:181–188.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. New York (NY):Oxford University Press; 1993.
  • Yoneya M, Iwasaki K, Tomioka Y, et al. Cell gap margin enlargement of in-plane switching mode liquid crystal displays using weak-anchoring effects. Appl Phys Lett. 1999;74:803–805.
  • Weng L, Liao P-C, Lin C-C, et al. Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces. AIP Adv. 2015;5:097218.
  • Nie X, Lu R, Xianyu H, et al. Anchoring energy and cell gap effects on liquid crystal response time. J Appl Phys. 2007;101:103110.
  • Tokita M, Sato O, Inagaki Y, et al. High-density poly(methyl methacrylate) brushes as anchoring surfaces of nematic liquid crystals. Jpn J Appl Phys. 2011;50:071701.
  • Sato O, Kasai T, Nomura A, et al. Viscoelastic PS brush surface offering strong anchoring at low temperature and near-zero anchoring at high temperature for LC molecules. Liq Cryst. 2013;40:221–227.
  • Meyerhofer D. Elastic and dielectric constants in mixtures of nematic liquid crystals. J Appl Phys. 1975;46:5084.
  • Yoshida T, Sugimoto A, Ikoma A, et al. Odd–even effect on viscoelastic properties of twin-dimer nematic liquid crystals. Liq Cryst. 2015;42:463–472.
  • Nastishin YA, Polak RD, Shiyanovskii SV, et al. Determination of nematic polar anchoring from retardation versus voltage measurements. Appl Phys Lett. 1999;75:202–204.
  • Murauski A, Chigrinov V, Kwok HS. New method for measuring polar anchoring energy of nematic liquid crystals. Liq Cryst. 2009;36:779–786.
  • Faetti S, Marianelli P. Strong azimuthal anchoring energy at a nematic-polyimide interface. Phys Rev E. 2005;72:051708.
  • Seo DS, Iimura Y, Kobayashi S. Temperature dependence of the polar anchoring strength of weakly rubbed polyimide films for the nematic liquid crystal (5CB). Appl Phys Lett. 1992;61:234–236.
  • Zhou Y, He Z, Sato S. A novel method for determining the cell thickness and twist angle of a twisted nematic cell by stokes parameter measurement. Jpn J Appl Phys. 1997;36:2760–2764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.