566
Views
15
CrossRef citations to date
0
Altmetric
Article

Tuning helical twisting power and photoisomerisation kinetics of axially chiral cyclic azobenzene dopants in cholesteric liquid crystals

, , , , , , , & show all
Pages 2181-2189 | Received 18 Feb 2019, Accepted 29 Apr 2019, Published online: 15 May 2019

References

  • Solladie G, Zimmermann RG. Liquid crystals: A tool for studies on chirality. Angew Chem Int Ed. 1984;23:348–362.
  • Kitzerow HS, Bahr C, ed. Chirality in liquid crystals. New York: Springer; 2001.
  • Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater. 2012;24(15):1926−1945.
  • Chen D, Porada JH, Hooper JB, et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc Natl Acad Sci U S A. 2013;110(40):15931−15936.
  • Pollmann P, Schulte K. Behaviour of the pitch of the cholesteric and chiral smectic C helix near and at the cholesteric – smectic A - chiral smectic C multicritical point. Liq Cryst. 2006;10(1):35–45.
  • Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4(2635):1–8.
  • Paterson DA, Abberley JP, Harrison WT, et al. Cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44(1):127–146.
  • Tschierske C. Mirror symmetry breaking in liquids and liquid crystals. Liq Cryst. 2018;45(13–15):2221–2252.
  • Kim Y, Wada M, Tamaoki N. Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: properties, additive effects and application in color recording. J Mater Chem C. 2014;2(10):1921− 1926.
  • Yoon J, Lee W, Thomas EL. Thermochromic block copolymer photonic gel. Macromolecules. 2008;41(13):4582–4584.
  • Weissman JM, Sunkara HB, Tse AS, et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science. 1996;274(5289):959–963.
  • Kawamoto M, Aoki T, Shiga N, et al. Thermo and photoresponsive behavior of liquid-crystalline helical structures with the aid of dual molecular motions. Chem Mater. 2009;21(3):564–572.
  • Bisoyi HK, Li Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc Chem Res. 2014;47(10):3184− 3195.
  • Wang L, Gutierrez-Cuevas KG, Bisoyi HK, et al. NIR light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods. Chem Commun. 2015;51(81):15039−15042.
  • Wang L, Dong H, Li Y, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by unprecedented near-infrared light nanotransducers. Adv Mater. 2015;27(12):2065−2069.
  • Kim Y, Tamaoki N. A photoresponsive planar chiral azobenzene dopant with high helical twisting power. J Mater Chem C. 2014;2(43):9258−9264.
  • Li Q, Green L, Venkataraman N, et al. Reversible photoswitchable axially chiral dopants with high helical twisting power. J Am Chem Soc. 2007;129(43):12908−12909.
  • Kim Y, Tamaoki N. Asymmetric dimers of chiral azobenzene dopants exhibiting unusual helical twisting power upon photoswitching in cholesteric liquid crystals. ACS Appl Mater Interfaces. 2016;8(7):4918–4926.
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist-bend nematic-nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dinner. J Am Chem Soc. 2016;138(16):5283–5289.
  • Walish JJ, Kang Y, Mickiewicz RA, et al. Bioinspired electrochemically tunable block copolymer full color pixels. Adv Mater. 2009;21(30):3078–3081.
  • Lu Y, Xia HX, Zhang GZ, et al. Electrically tunable block copolymer photonic crystals with a full color display. J Mater Chem. 2009;19(33):5952–5955.
  • Xiang J, Li Y, Li Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27(19):3014–3018.
  • Xiang J, Varanytsia A, Minkowski F, et al. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc Natl Acad Sci U S A. 2016;113(46):12925–12928.
  • Kausar A, Nagano H, Kuwahara Y, et al. Photocontrolled manipulation of a microscale object: a rotational or translational mechanism. Chem - Eur J. 2011;17(2):508−515.
  • Hsu WL, M J, Myhre G, et al. Patterned cholesteric liquid crystal polymer film. J Opt Soc Am B. 2013;30(2):252–258.
  • Inoue Y, Yoshida H, Inoue K, et al. Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network. Adv Mater. 2011;23(46):5498–5501.
  • Furumi S, Tamaoki N. Glass‐forming cholesteric liquid crystal oligomers for new tunable solid‐state laser. Adv Mater. 2010;22(8):886–891.
  • Salili SM, Xiang J, Wang H, et al. Magnetically tunable selective reflection of light by heliconical cholesterics. Phys Rev E. 2016;94(4):042705.
  • Li Q, Li Y, Ma J, et al. Directing dynamic control of red, green, and blue reflection enabled by a light‐driven self‐organized helical superstructure. Adv Mater. 2011;23(43):5069–5073.
  • Arsenault AC, Clark TJ, Freymann GV, et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater. 2006;5(3):179–184.
  • Ha NY, Ohtsuka Y, Jeong SM, et al. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nat Mater. 2008;7(1):43–47.
  • Tamaoki N, Song N, Moriyama M, et al. Rewritable full‐color recording in a photon mode. Adv Mater. 2000;12(2):94–97.
  • Ji M, Li X. Towards nanoscale molecular switch-based liquid crystal displays. Displays. 2013;34(4):293–300.
  • Cheng KT, Liu CK, Ting CLet al,. Optical addressing in dye-doped cholesteric liquid crystals. Opt Commun. 2008;281(20):5133–5139.
  • Goh M, Akagi K. Powerful helicity inducers: axially chiral binaphthyl derivative. Liq Cryst. 2008;35(8):953–965.
  • Mathews M, Zola RS, Hurley S, et al. Light-driven reversible handedness inversion in self-organized helical superstructures. J Am Chem Soc. 2010;132(51):18361–18366.
  • Wang Y, Urbas A, Li Q. Reversible visible-light tuning of self-organized helical superstructures enbled by unprecedented light-driven axially chiral molecular switches. J Am Chem Soc. 2012;134(7):3342–3345.
  • Ma J, Li Y, White T, et al. Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning. Chem Commun. 2010;46(20):3463–3465.
  • Li Y, Xue C, Wang M, et al. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures. Angew Chem Int Ed. 2013;52(51):13948–13952.
  • Siewertsen R, Neumann H, Buchheim-Stehn B, et al. Highly efficient reversible Z−E photoisomerization of a bridged azobenzene with visible light through resolved S1 (nπ*) absorption bands. J Am Chem Soc. 2009;131(43):15594–15595.
  • Xie Y, Fu D, Jin O, et al. Photoswitchable molecular switches featuring both axial and tetrahedral chirality. J Mater Chem C. 2013;1(44):7346−7356.
  • Lu HB, Xie XY, Xing J, et al. Wavelength-tuning and band-broadening of a cholesteric liquid crystal induced by a cyclic chiral azobenzene compound. Opt Mater Express. 2016;6(10):3145–3158.
  • Takaishi K, Muranaka A, Kawamoto M, et al. Planar chirality of twisted –azobenzenes structure induced by chiral transfer from binaphthyls. J Org Chem. 2011;76(18):7623–7628.
  • Takaishi K, Kawamoto M. Synthesis and conformation of substituted chiral binaphthyl azobenzene cyclic dyads with chiroptical switching capabilities. Molecules. 2011;16(2):1603–1624.
  • He WL, Li M, Liu SQ, et al. Synthesis of chiral azobenzene derivatives and the performance in photochemical control of blue phase liquid crystal. Liq Cryst. 2018;45(3):370–380.
  • Chen YM, Chen CF, Xi F. Chiral dendrimers with axial chirality. Chirality. 2015;10(7):661–666.
  • Takaishi K, Kawamoto M, Tsubaki K, et al. Helical chirality of azobenzenes induced by an intramolecular chiral axis and potential as chiroptical switches. Chemistry. 2011;17(6):1778–1782.
  • Rosini C, Superchi A, Peerlings HWI, et al. Enantiopure dendrimers derived from the 1,1ʹ-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1ʹ-binaphthyl template. Eur J Org Chem. 2000;200(1):61–67.
  • Wu Y, Wu S, Zou G, et al. Solvent effects on structure, photoresponse and speed of gelation of a dicholesterol-linked azobenzene organogel. Soft Matter. 2011;7(19):9177−9183.
  • Joshi NK, Fuyuki M, Wada A. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4- aminoazobenzene. J Phys Chem B. 2014;118(7):1891−1899.
  • Mandle RJ, Goodby JW. An experimental and computational study of calamitic and bimesogenic liquid crystals incorporating an optically active 2, 2 -paracyclophane. Liq Cryst. 2018;45(11):1567–1573.
  • Raynal M, Bouteiller L. Organogel formation rationalized by Hansen solubility parameters. Chem Commun. 2011;47(29):8271−8273.
  • Stenfanis E, Panayiotou C. Prediction of Hansen solubility parameters with a new group-contribution method. Int J Therm. 2008;29(2):568–585.
  • Zhao D, Qiu Y, Cheng W, et al. Precisely tuning helical twisting power via photoisomerization kinetics of dopants in chiral nematic liquid crystals. Langmuir. 2018;34(2):700−708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.