506
Views
24
CrossRef citations to date
0
Altmetric
Article

Tunable dual-band liquid crystal based near-infrared perfect metamaterial absorber with high-loss metal

&
Pages 1568-1573 | Received 19 Dec 2018, Accepted 10 May 2019, Published online: 28 May 2019

References

  • Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. 2011;10:911–921.
  • Ding F, Dai J, Chen Y, et al. Broadband near infrared metamaterial absorbers utilizing highly lossy metals. Sci Rep. 2016;6:39445.
  • Xu Z, Chen Y, Gartia MR, et al. Surface plasmon enhanced broadband spectrophotometry on black silver substrates. Appl Phys Lett. 2011;98:241904.
  • Cui Y, He Y, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 2014;8:495–520.
  • Cong JW, Zhou ZQ, Yun BF, et al. Broadband visible-light absorber via hybridization of propagating surface plasmon. Opt Lett. 2016;41(9):1965–1968.
  • Wu D, Liu C, Liu Y, et al. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt Lett. 2017;42(3):450–453.
  • Alves F, Grbovic D, Kearney B, et al. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber. Opt Lett. 2012;37:1886–1888.
  • Li ZY, Palacios E, Butun S, et al. Omnidirectional, broadband light absorption using large-arena, ultrathin lossy metallic film coatings. Sci Rep. 2015;5:15137.
  • Kim J, Han K, Hahn JW. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci Rep. 2017;7:6740.
  • Yao G, Ling F, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range. Opt Express. 2016;24(2):1518–1527.
  • Ye YQ, Jin Y, He S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J Opt Soc Am B. 2010;27(3):498–550.
  • Sheokand H, Ghosh S, Singh G, et al. Transparent broadband metamaterial absorber based on resistive films. J Appl Phys. 2017;122:105105.
  • Kowerdziej R, Krupka J, Nowinowski – Kruszelnicki E, et al. Microwave complex permittivity of voltage – tunable nematic liquid crystals measured in high resistivity silicon transducers. Appl Phys Lett. 2013;102:102904.
  • Kowerdziej R, Jaroszewicz L. Active control of terahertz radiation using a metamaterial loaded with a nematic liquid crystal. Liq Cryst. 2016;43(8):1120–1125.
  • Lewandowski W, Fruhnert M, Mieczkowski J, et al. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Comm. 2015;6:6590.
  • Dziaduszek J, Dąbrowski R, Urban S, et al. Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications. Liq Cryst. 2017;44(8):1277–1292.
  • Kowerdziej R, Olifierczuk M, Parka J. Thermally induced tunability of a terahertz metamaterial by usin a specially designed nematic liquid crystal mixture. Opt Express. 2018;26(3):2443–2452.
  • Parka J, Sielezin K. 0.3–10 THz spectra for chosen liquid crystal molecules – simulation and physical properties. Mol Cryst Liq Cryst. 2018;657(1):66–71.
  • Mos JE, Stasiewicz KA, Garbat K, et al. Tapered fiber liquid crystal hybrid broad band device. Phys Scr. 2018;93:12502.
  • Tykarska M, Czerwiński M. The inversion phenomenon of the helical twist sense in antiferroelectric liquid crystal phase from electronic and vibrational circular dichroism. Liq Cryst. 2016;43(4):462–472.
  • Herman J, Dmochowska E, Czerwiński M. Synthesis of new chiral mono- and diacrylates for ferro- and antiferroelectric liquid crystals. J Mol Liq. 2018;271:353–360.
  • Kowerdziej R, Stańczyk T, Parka J. Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal. Liq Cryst. 2015;42(4):430–434.
  • Olifierczuk M, Kowerdziej R, Jaroszewicz L, et al. Numerical analysis of THz metamaterial with high birefringence liquid crystal. Liq Cryst. 2012;39(6):739–744.
  • Kowerdziej R, Garbat K, Walczakowski M. Nematic liquid crystal mixtures dedicated to thermally tunable terahertz devices. Liq Cryst. 2018;45(7):1040–1046.
  • Vora A, Gwamuri J, Pala N, et al. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep. 2014;4:4901.
  • Wang L, Ge S, Hu W, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Opt Express. 2017;25(20):23873–23879.
  • Hokmabadi MP, Tareki A, Rivera E, et al. Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal. AIP Adv. 2017;7:015102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.