648
Views
24
CrossRef citations to date
0
Altmetric
Article

Systematic study of the chiral smectic phases of a fluorinated compound

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2256-2268 | Received 27 Feb 2019, Accepted 18 May 2019, Published online: 03 Jun 2019

References

  • Kelker H. History of liquid crystals. Mol Cryst Liq Cryst. 1973;21:1–48.
  • Meyer RB, Liebert L, Strzelecki L, et al. Ferroelectric liquid crystals. Le J Phys Lett. 1975;36:69–71.
  • Kurp K, Tykarska M, Drzewicz A, et al. Effect of ferroelectric liquid crystalline quaterphenyl structure and handedness on helical pitch length in bicomponent mixtures. Liq Cryst. 2017;44:618–627.
  • Goodby JW, Chin E, Leslie TM, et al. Helical twist sense and spontaneous polarization direction in ferroelectric smectic liquid crystals. 1. J Am Chem Soc. 1986;108:4729–4735.
  • Goodby JW, Chin E. Helical twist and spontaneous polarization direction in ferroelectric smectic liquid crystals. 2. J Am Chem Soc. 1986;108:4736–4742.
  • Chandani ADL, Górecka E, Ouchi Y, et al. Antiferroelectric chiral smectic phases responsible for the tristable switching in MHPOBC. Jpn J Appl Phys. 1989;28:L1265–L1268.
  • Tschierske C. Mirror symmetry breaking in liquids and liquid crystals. Liq Cryst. 2018;45:2221–2252.
  • Rutkowska J, Kędzierski J, Raszewski Z, et al. Properties of system with induced SmC*A phase. Mol Cryst Liq Cryst. 2001;366:617–628.
  • D’havé K, Dahlgren A, Rudquist P, et al. Antiferroelectric liquid crystals with 45° tilt – a new class of promising electro–optic materials. Ferroelectrics. 2000;244:115–128.
  • Inui S, Kawano S, Saito M, et al. First order paraelectric–antiferroelectric phase transition in a chiral smectic liquid crystal of a fluorine containing phenyl pyrimidine derivative. Jpn J Appl Phys. 1990;29:987–990.
  • Dardas D. Electro–optic and viscoelastic properties of a ferroelectric liquid crystalline binary mixture. Phase Transitions. 2016;1594:368–375.
  • Dąbrowski R. Liquid crystals with fluorinated terminal chains and antiferroelectric properties. Ferroelectrics. 2000;243:1–18.
  • Milewska K, Drzewiński W, Czerwiński M, et al. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase. Mater Chem Phys. 2016;171:33–38.
  • Cho MJ, Park HG, Jeong HC, et al. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq Cryst. 2014;41:761–767.
  • Balasubramaniam VM, Sastry SK. Use of liquid crystals as temperature sensors in food processing research. J Food Eng. 1995;26:219–230.
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano–, bio– and microtechnology. Curr Appl Phys. 2012;12:1387–1412.
  • Dąbrowski R, Drzewiński W, Dziaduszek J, et al. Orthoconic antiferroelectric liquid crystals containing biphenyl, terphenyl, or naphthyl mesogenic unit. Opto Electron Rev. 2007;15:32–36.
  • Malik P, Chaudhary A, Mehra R, et al. Electro–optic, thermo–optic and dielectric responses of multiwalled carbon nanotube doped ferroelectric liquid crystal thin films. J Mol Liq. 2012;165:7–11.
  • Fukuda A, Takanishi Y, Isozaki T, et al. Antiferroelectric chiral smectic liquid crystals. J Matter Chem. 1994;4:997–1016.
  • Żurowska M, Dąbrowski R, Dziaduszek J, et al. Synthesis and mesomorphic properties of chiral esters comprising partially fluorinated alkoxyalkoxy terminal chains and a 1–methylheptyl chiral moiety. Mol Cryst Liq Cryst. 2008;495:145–157.
  • Roisnel T, Rodriguez–Carvajal J WinPLOTR: a windows tool for powder diffraction patterns analysis.In: Delhez R, Mittenmeijer EJ, editors. Proceedings of the 7th European powder diffraction conference. Vols. 378–381. Materials Science Forum; 2001. Switzerland: Trans Tech Publications. p. 118–123. doi:10.4028/www.scientific.net/MSF.378-381.11
  • Ahuja JK, Raina KK. Polarization switching and dielectric relaxations in ferroelectric liquid crystals. Jpn J Appl Phys. 2000;39:4076–4081.
  • Miyasato K, Abe S, Takezoe H, et al. Direct method with triangular waves for measuring spontaneous polarization in ferroelectric liquid crystals. Jpn J Appl Phys. 1983;22:L661–L663.
  • Khosla S, Raina KK. Switching responses of ferroelectric liquid crystals. Indian J Pure Appl Phys. 2004;42:49–55.
  • Clark NA, Lagerwall ST. Submicrosecond bistable electro–optic switching in liquid crystals. Appl Phys Lett. 1980;36:899–901.
  • Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf. 2018;4:1–17.
  • Kašpar M, Hamplová V, Pakhomov SA, et al. The effect of a lateral substituent on the mesomorphic properties in a series of ferroelectric liquid crystals with a 2–alkoxypropionate unit. Liq Cryst. 1997;22:557–561.
  • Mishra A, Dąbrowski R, Dhar R. Dielectric characteristics of highly ionic antiferroelectric liquid crystalline material. J Mol Liq. 2018;249:106–109.
  • Żurowska M, Dąbrowski R, Dziaduszek J, et al. Synthesis and properties of high tilted antiferroelectric esters with partially fluorinated alkoxyalkoxy terminal chains. Opto Electron Rev. 2008;16:251–256.
  • Marzec M, Mikułko A, Wróbel S, et al. Alpha sub–phase in a new ferroelectric fluorinated compound. Liq Cryst. 2004;31:153–159.
  • Perkowski P, Piecek W, Raszewski Z, et al. New high frequency dielectric mode in fluorinated antiferroelecteric liquid crystals. Ferroelectrics. 2008;365:88–94.
  • Żurowska M, Dąbrowski R, Dziaduszek J, et al. Comparison of racemic and enantiomeric 4′–(1–methylheptyloxycarbonyl)biphenyl–4–yl 4–[3–(2,2,3,3,4,4,4–heptafluorobutoxy)prop–1–oxy]benzoates. Mol Cryst Liq Cryst. 2010;525:219–225.
  • Żurowska M, Morawiak P, Piecek W, et al. A new mesogenic mixture with antiferroelectric phase only at a broad temperature range. Liq Cryst. 2016;43:1365–1374.
  • Dardas D, Nowicka K, Kuczyński W. Examination of three new fluorinated tilted smectics. Phase Transitions. 2013;86:147–152.
  • Kuczyński W, Dardas D, Goc F, et al. Linear and quadratic electrooptic effects in antiferroelectric liquid crystals. Ferroelectrics. 2000;244:191–199.
  • Kuczyński W, Goc F, Dardas D, et al. Phase transitions in a liquid crystal with long–range dipole order. Ferroelectrics. 2002;274:83–100.
  • Demus D, Goodby JW. Handbook of liquids crystals. Weinheim: Wiley–VCH; 1998.
  • Blinov LM. Structure and properties of liquid crystals. New York: Springer; 2011.
  • Deptuch A, Jaworska–Gołąb T, Marzec M, et al. Mesomorphic phase transitions of 3F7HPhF studied by complementary methods. Phase Transitions. 2018;91:186–198.
  • De Vries A, Ekachai A, Spielberg N. Why the molecules are tilted in all smectic A* phases, and how the layer thickness can be used to measure orientational disorder. Mol Cryst Liq Cryst. 1979;49:143–152.
  • Mikułko A, Marzec M, Wróbel S, et al. Complementary studies of de Vries type SmA* phase. Chem Phys Lett. 2006;431:289–293.
  • Labeeb A, Gleeson HF, Hegmann T. Polymer stabilization of the smectic C–alpha* liquid crystal phase – over tenfold thermal stabilization by confining networks of photo–polymerized reactive mesogens. Appl Phys Lett. 2015;107:1–6.
  • Takanishi Y, Ikeda A, Takezoe H, et al. Higher smectic–layer order parameters in liquid crystals determined by X–ray diffraction and the effect of antiferroelectricity. Phys Rev E. 1995;51:400–406.
  • Kašpar M, Bubnov A, Hamplová V, et al. Effect of lateral substitution by fluorine and bromine atoms in ferroelectric liquid crystalline materials containing a 2–alkoxypropanoate unit. Liq Cryst. 2007;34:1185–1192.
  • Hamplová V, Bubnov A, Kašpar M, et al. New ferroelectric and antiferroelectric liquid crystalline materials containing differing numbers of lactate units. Liq Cryst. 2003;30:627–631.
  • Mikułko A, Marzec M, Wróbel S, et al. Detection of alpha sub–phase between para– and ferroelectric phase of a fluorinated compound. Ferroelectrics. 2004;313:105–112.
  • Žekš B, Čepič M. A phenomenological model of antiferroelectric liquid crystals. Liq Cryst. 1993;14:445–451.
  • Czerwiec JM, Żurowska M, Garbat K, et al. Investigation of new chiral fluorosubstituted compound exhibiting room temperature antiferroelectric phase. Opto Electron Rev. 2011;19:270–276.
  • Fąfara A, Marzec M, Haase W, et al. Antiferroelectric liquid crystals studied by different methods. Ferroelectrics. 2007;245:81–89.
  • Raszewski Z, Kedzierski J, Kutkowska J, et al. Determination of molecular parameters of the MHPB(H)PBC and MHPB(F)PBC antiferroelectric liquid crystals. Mol Cryst Liq Cryst. 2007;366:607–616.
  • Perkowski P, Raszewski Z, Kędzierski J, et al. Influence of fluorine substitution for hydrogen on the appearance of SmC* phase between SmA* and SmC*A phases. Mol Cryst Liq Cryst. 2004;411:145–153.
  • Mikułko A, Douali R, Legrand C, et al. Phase behaviour and dynamics of exemplary MHPOBC analogue. Phase Transitions. 2005;78:949–955.
  • Uehara H, Lino Y, Hatano J. Phase boundaries between chiral smectic Cα, Cβ and C phases in an antiferroelectric liquid crystal, MHPOBC. Jpn J Appl Phys. 1997;36:6118–6121.
  • Marzec M, Mikułko A, Wróbel S, et al. Antiferroelectric modes behaviour in a wide temperature range SmC*A phase. Mol Cryst Liq Cryst. 2007;437:169–180.
  • Douali R, Legrand C, Nguyen HT. Temperature dependence of SmC*A phase electric field behavior as evidenced by polarization current and dielectric measurements. Ferroelectrics. 2000;245:101–110.
  • Morawiak P, Piecek W, Żurowska M, et al. Effect of fluorination of molecular rigid core in liquid crystal biphenyl benzoate based homologous series. Opto Electron Rev. 2009;17:40–44.
  • Żurowska M, Dziaduszek J, Szala M, et al. Effect of lateral fluorine substitution far from the chiral center on mesomorphic behaviour of highly titled antiferroelectric (S) and (R) enantiomers. J Mol Liq. 2018;267:504–510.
  • Fitas J, Dłubacz A, Fryń P, et al. New ferroelectric and antiferroelectric liquid crystals studied by complementary methods. Liq Cryst. 2017;44:566–576.
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9:341–351.
  • Panarin YP, Kalinovskaya O, Vij JK. The investigation of the relaxation processes in antiferroelectric liquid crystals by electro–optic spectroscopy. Appl Phys Lett. 1998;72:1667–1668.
  • Panarin YP, Kalinovskaya O, Vij JK, et al. The relaxation phenomena in antiferroelectric and ferrielectric phases. Ferroelectrics. 2000;245:91–99.
  • Manna U, Song JK, Chandani ADL, et al. Effects of confinement and electric field on the dielectric behavior of smectic–C*α phase. Mol Cryst Liq Cryst. 2009;512:21–31.
  • Shtykov NM, Vij JK, Panov VP, et al. Observation of an SmC*α phase in an antiferroelectric liquid crystal using pyroelectrics and dielectrics. J Matter Chem. 1999;9:1383–1385.
  • Rutkowska J, Perkowski P, Kędzierski J, et al. Study of the SmC*A phase by dielectric measurements. Mol Cryst Liq Cryst. 2004;409:389–400.
  • Sarmento S, Simeão PC, Chaves MR, et al. Ferroelectric–like and antiferroelectric–like behaviour of the SmC*α phase. Mol Cryst Liq Cryst. 1999;328:457–465.
  • Douali R, Legrand C, Faye V, et al. Dielectric dispersion in the SmC*α phase of an antiferroelectric liquid crystal. Mol Cryst Liq Cryst. 1999;328:209–219.
  • Rutkowska J, Kędzierski J, Raszewski Z, et al. Properties of system with induced SmC*A phase. Mol Cryst Liq Cryst. 2007;366:617–628.
  • Blinc R, Žekš B. Dynamics of helicoidal ferroelectric smectic–C* liquid crystals. Phys Rev A. 1978;18:740–745.
  • Marzec M, Mikułko A, Wróbel S, et al. Molecular structure and physical properties of chiral liquid crystalline compounds. Mol Cryst Liq Cryst. 2008;480:140–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.