148
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Low gamma shift blue-phase liquid crystal display with electric field induced multi-domain electrode structure

ORCID Icon, , , , , , & show all
Pages 54-66 | Received 10 May 2019, Accepted 31 May 2019, Published online: 13 Jun 2019

References

  • Barnes D. LCD or OLED: who Wins? SID Int Symp Dig Tech. 2013;44:26–27.
  • Kim DH, Lim YJ, Kim DE, et al. Past, present, and future of fringe-field switching-liquid crystal display. J Disp Technol. 2014;15:99–106.
  • Chen HW, Lee JH, Lin BY, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light-SCI Appl. 2018;7:17168.
  • Chen Y, Wu ST. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices. J Appl Polym Sci. 2014;131:40556.
  • Peng F, Chen H, Gou F, et al. Analytical equation for the motion picture response time of display devices. J Appl Phys. 2017;121:023108.
  • Choi TH, Woo JH, Choi Y, et al. Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals. Opt Express. 2016;24:27569–27576.
  • Zhang Z, You Z, Chu D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light-SCI Appl. 2014;3:e213.
  • Huang Y, Chen H, Tan G, et al. Optimized blue-phase liquid crystal for field-sequential-color displays. Opt Mater Experss. 2017;7:641–650.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Chen KM, Gauza S, Xianyu H, et al. Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. J Disp Technol. 2010;6:49–51.
  • Chen HW, Zhu RD, He J, et al. Going beyond the limit of an LCD’s color gamut. Light-SCI Appl. 2017;6:e17043.
  • Jiao M, Li Y, Wu ST. Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes. Appl Phys Lett. 2010;96:011102.
  • Chen H, Lan YF, Tsai CY, et al. Low-voltage blue-phase liquid crystal display with diamond-shape electrodes. Liq Cryst. 2017;44:1124–1130.
  • Lin YH, Chen HS, Lin HC, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:113505.
  • Rao L, Yan J, Wu ST, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2011;98:081109.
  • Chen KM, Gauza S, Xianyu H, et al. Hysteresis effects in blue-phase liquid crystals. J Disp Technol. 2010;6:318–322.
  • Guo Y, Wang Y, Zhang C, et al. Low voltage blue-phase liquid crystal display with insulating protrusion sandwiched between dual-layer electrodes. Liq Cryst. 2019;46:523–534.
  • Rao L, Ge Z, Wu S-T. Zigzag electrodes for suppressing the color shift of Kerr effect-based liquid crystal displays. J Disp Technol. 2010;6:115–120.
  • Xu D, Chen Y, Liu Y, et al. Refraction effect in an in-plane-switching blue phase liquid crystal cell. Opt Express. 2013;21:24721–24735.
  • Rao L, Wu ST, Lai YC, et al. Critical field for a hysteresis-free BPLC device. J Disp Technol. 2011;7:627–629.
  • Su Z, Chen Y, Lu J, et al. High-transmittance polymer-stabilised blue-phase liquid crystal display with double-sided protrusion electrodes. Liq Cryst. 2013;40:976–979.
  • Lee YJ, Park M, Lee DM, et al. Reduction of the operating voltage of a nanoencapsulated liquid crystal display by using a half-wall structure. Opt Express. 2017;25:409–414.
  • Guo Y, Li X, Mu Q, et al. Single electro-optic curve for RGB colours in blue-phase liquid crystal display. Liq Cryst. 2019;46:835–845.
  • Guo Y, Fu M, Ren Y, et al. Low-voltage blue-phase liquid crystal display with single-penetration electrodes. Liq Cryst. 2017;44:2321–2326.
  • Tian LL, Chu F, Dou H, et al. A transflective polymer-stabilised blue-phase liquid display with partitioned wall-shaped electrodes. Liq Cryst. 2018;45:1259–1263.
  • Chu F, Dou H, Song YL, et al. A transflective blue-phase liquid crystal display with alternate electrodes. Liq Cryst. 2017;44:1316–1320.
  • Xing Y, Guo Z, Li Q. Reflective blue phase liquid crystal displays with double-side concave-curved electrodes. Liq Cryst. 2018;45:507–512.
  • Chan BH, Choi WK. Three-dimensional corrugated electrode structure for low-voltage high-transmittance blue-phase liquid crystal displays. Liq Cryst. 2019;46:806–815.
  • Kim SS, Berkeley BH, Kim KH, et al. New technologies for advanced LCD-TV performance. J Soc Inf Display. 2004;12:259–353.
  • Khandelwal H, Loonen RCGM, Hensen JLM, et al. Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings. J Mater Chem A. 2014;2:14622–14627.
  • Wang YY, Chen LW. Tunable negative refraction photonic crystals achieved by liquid crystals. Opt Express. 2006;14:10580–10587.
  • Lin YH, Chen MS, Lin WC, et al. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90º twisted cell. J Appl Phys. 2012;112:024505.
  • Gao Y, Luo Z, Zhu R, et al. A high performance single-domain LCD with wide luminance distribution. J Disp Technol. 2015;11:315–324.
  • Park SS, Sohn I, Cho E, et al. Color shift reduction of liquid crystal displays by controlling light distribution using a micro-lens array film. J Disp Technol. 2012;8:643–649.
  • Lee GS, Kim JC, Yoon TH. Electrode structure for color shift reduction in fringe-field switching mode. Opt Express. 2007;15:5405–5415.
  • Park SB, Song JK, Um Y, et al. Pixel-division technology for high-quality vertical-alignment LCDs. IEEE Electr Device L. 2010;31:987–989.
  • Lim YJ, Kim JH, Her JH, et al. Viewing angle switching of liquid crystal display using fringe-field switching to control off-axis phase retardation. J Phys D: Appl Phys. 2010;43:085501.
  • Shin YC, Park MK, Kim B, et al. Micropatterned vertical alignment liquid crystal mode with dual threshold voltages for improved off-axis gamma distortion. IEEE T Electron Dev. 2018;65:150–157.
  • Guo Y, Wang Y, Zhang C, et al. Blue-phase liquid crystal display with insulating protrusion. Liq Cryst. 2018;45:1585–1593.
  • Kim SU, Lee BY, Suh JH, et al. Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens. Liq Cryst. 2017;44:364–371.
  • Lu R, Wu ST, Ge Z, et al. Bending angle effects on the multi-domain in-plane-switching liquid crystal displays. J Disp Technol. 2005;1:207–216.
  • Park JH, Oh SW, Huh JW, et al. Four-domain electrode structure for wide viewing angle in a fringe-field-switching liquid crystal display. J Disp Technol. 2016;12:667–672.
  • Yan J, Cheng HC, Gauza S, et al. Extended Kerr effect of polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:071105.
  • Gerber PR. Electro-optical effects of a small-pitch blue-phase system. Mol Cryst Liq Cryst. 1985;116:197–201.
  • Oh SW, Kim AK, Park BW, et al. Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display. J Inf Disp. 2015;16:1–10.
  • Ge Z, Rao L, Gauza S, et al. Modeling of blue-phase liquid crystal displays. J Disp Technol. 2009;5:250–256.
  • Ge Z, Gauza S, Jiao M, et al. Electro-optics of polymer-stabilized blue phase liquid crystal displays. Appl Phys Lett. 2009;94:101104.
  • Yan J, Xing Y, Guo Z, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system. Opt Express. 2015;23:15256–15264.
  • Rayleigh L. Investigations in optics, with special reference to the spectroscope. Phil Mat S. 1879;8:261–274.
  • Elliott CHB, Credelle TL inventor; Clairvoyante, Inc., assignee. Novel subpixel layouts and arrangements for high brightness displays. United States patent US0225575. 2005 Oct 13.
  • Elliott CHB, Higgins MF inventor; Clairvoyante, Inc., assignee. Subpixel rendering filters for high brightness subpixel layouts. United States patent US0070086. 2007 Mar 29

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.