371
Views
12
CrossRef citations to date
0
Altmetric
Article

Broadband complex permittivity measurements of nematic liquid crystals based on cavity perturbation method

ORCID Icon, , , , , , & show all
Pages 89-98 | Received 03 Mar 2019, Accepted 06 Jun 2019, Published online: 20 Jun 2019

References

  • Manabe A, Chien LC, Broer DJ, et al. Liquid crystals for microwave applications. In: Proceedings of 2013 7th European Conference on Antennas and Propagation; 2013 Apr 8-12; Gothenburg, Sweden: IEEE;2013. p. 1793–1794.
  • Robert C, Zbigniew C, Yuriy G, et al. Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges. Liq Cryst Rev. 2018;6(1):17–52.
  • Alihosseini F, Ahmadi V, Mir A. Design and analysis of a tunable liquid crystal switch/filter with metallic nano-slits. Liq Cryst. 2015;42(11):1638–1642.
  • Rafaå‚ K, Parka J, Nyga P, et al. Simulation of a tunable metamaterial with nematic liquid crystal layers. Liquid Crystals Liq Cryst. 2011;38(3):377–379.
  • Peroukidis SD, Yannopapas V, Vanakaras AG, et al. Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal. Liq Cryst. 2014;41(10):1430–1435.
  • Kowerdziej R, Parka J, Krupka J. Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies. Liq Cryst. 2011;38(6):743–747.
  • Jia D, Yang C, Li X, et al. Optical hyperbolic metamaterials based on nanoparticles doped liquid crystals. Liq Cryst. 2014;41(2):207–213.
  • Kowerdziej R, Garbat K, Walczakowski M. Nematic liquid crystal mixtures dedicated to thermally tunable terahertz devices. Liq Cryst. 2018;45(7):1040–1046.
  • Atorf B, Funck T, Hegmann T, et al. Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures. Liq Cryst. 2017;44(12–13):1929–1947.
  • Holger M, Matthias J, Roland R, et al. Microwave Liquid Crystal Technology. Cryst. 2018;8(9):355.
  • Deo P, Mirshekarsyahkal D, Seddon L, et al. Microstrip Device for Broadband (15–65 GHz) Measurement of Dielectric Properties of Nematic Liquid Crystals. IEEE T Microw Theory. 2015;63(4):1388–1398.
  • Norooziarab M, Bulja S, Cahill R, et al. Variable Temperature Broadband Microwave and Millimeter-Wave Characterization of Electrochromic (WO3/LiNbO3/NiO) Thin Films. IEEE T Microw Theory. 2018;66(2):1070–1080.
  • Yang F, Sambles JR. Determination of the permittivity of nematic liquid crystals in the microwave region. Liq Cryst. 2003;30(5):599–602.
  • Mueller S, Penirschke A, Damm C, et al. Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line. IEEE T Microw Theory. 2005;53(6):1937–1945.
  • Bulja S, Mirshekar-Syahkal D, James RMeasurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength. IEEE T Microw Theory. 2010;58(12):3493–3501.
  • Karabey OH, Goelden F, Gaebler A, et al. Precise broadband microwave material characterization of liquids. In: Proceedings of the 40th European Microwave Conference; 2010 Sept 28–30; Paris, France: IEEE; 2010. p. 1591–1594.
  • Penirschke A, Muller S, Scheele P, et al. Cavity perturbation method for characterization of liquid crystals up to 35 GHz. In: Proceedings of the 34th European Microwave Conference; 2004 Oct 12–14; Amsterdam, The Netherlands: IEEE; 2005. p. 545–548.
  • Lapanik V, Sasnouski G, Timofeev S, et al. New highly anisotropic liquid crystal materials for high-frequency applications. Liq Cryst. 2018;45(8):1242–1249.
  • Gäbler A. Synthese steuerbarer Hochfrequenzschaltungen und Analyse Flüssigkristall-Basierter Leitungsphasenschieber in Gruppenantennen für Satellitenanwendungen im Ka-Band [dissertation]. Darmstadt: Technische Universität Darmstadt; 2015.
  • Felix G. Liquid Crystal Based Microwave Components with Fast Response Times: material, Technology, Power Handling Capability [dissertation]. Darmstadt: Technische Universität Darmstadt; 2010.
  • Parka J, Krupka J, Dabrowski R, et al. Measurements of anisotropic complex permittivity of liquid crystals at microwave frequencies. J Eur Ceram Soc. 2007;27(8–9):2903–2905.
  • Rafaå‚ K, Krupka J, Nowinowski-Kruszelnicki E, et al. Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers. Appl Phys Lett. 2013;102(10):1732–1734.
  • Xu G, Peng HL, Sun C, et al. Differential Probe Fed Liquid Crystal-Based Frequency Tunable Circular Ring Patch Antenna. IEEE Access. 2018;6(99):3051–3058.
  • Schaub DE, Oliver DR. A circular patch resonator for the measurement of microwave permittivity of nematic liquid crystal. IEEE T Microw Theory. 2011;59(7):1855–1862.
  • Yazdanpanahi M, Bulja S, Mirshekar-Syahkal D, et al. Measurement of Dielectric Constants of Nematic Liquid Crystals at mm-Wave Frequencies Using Patch Resonator. IEEE T Instrum Meas. 2010;59(12):3079–3085.
  • Catanescu CO, Wu ST, Chien LC. Tailoring the physical properties of some high birefringence isothiocyanato-based liquid crystals. Liq Cryst. 2004;31(4):541–555.
  • Liu S, Shen F, Huang J, et al. Synthesis of isothiocyanate fluorinated diphenyl acetylene liquid crystal. Chin J Liq Cryst Disp. 2015;30(6):1–9.
  • Li T, Wang Z, Wang GH, et al. Synthesis of two-ring nematic phase liquid crystal compounds with low melting point and high Δn value. Chin J Liq Cryst Disp. 2017;32(11):15–21.
  • Herman J, Dziaduszek J, Dabrowski R, et al. Novel high birefringent isothiocyanates based on quaterphenyl and phenylethynyltolane molecular cores. Liq Cryst. 2013;40(9):1174–1182.
  • Dabrowski R, Kula P, Herman J. High Birefringence Liquid Crystals. Cryst. 2013;3(3):443–482.
  • Hsu CS, Shyu KF, Chuang YY, et al. Synthesis of laterally substituted bistolane liquid crystals. Liq Cryst. 2000;27(2):283–287.
  • Sihan Z, Keqing L, Zhiyong Z, et al. Synthesis and properties of fluorinated Phenylethynyltolane compounds. Chin J Liq Cryst Disp. 2015;30(5):769–776.
  • Chengyong Y, En L, Gaofeng G. Dielectric characterisation of small samples using broadband coaxial cavity. Electron Lett. 2017;53(19):1316–1318.
  • Kik A. Complex Permittivity Measurement Using a Ridged Waveguide Cavity and the Perturbation Method. IEEE T Microw Theory. 2016;64(11):3878–3886.
  • Catala-Civera JM, Canos AJ, Plaza-Gonzalez P, et al. Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE T Microw Theory. 2015;63(9):2905–2914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.