160
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Low-gamma shift asymmetrical double-side blue-phase liquid crystal display

ORCID Icon, , , , , & show all
Pages 199-210 | Received 27 May 2019, Accepted 20 Jun 2019, Published online: 27 Jun 2019

References

  • Kim DH, Lim YJ, Kim DE, et al. Past, present, and future of fringe-field switching-liquid crystal display. J Disp Technol. 2014;15:99–106.
  • Yoon JH, Lee SJ, Lim YJ, et al. Fast switching, high contrast and high resolution liquid crystal device for virtual reality display. Opt Express. 2018;26:34142–34149.
  • Chen HW, Zhu RD, He J, et al. Going beyond the limit of an LCD’s color gamut. Light-SCI Appl. 2017;6:e17043.
  • Eom YH, Yoon SS, Park SR, et al. Novel in-plane switching (IPS) mode with high transmittance using negative dielectric liquid crystal. SID Int Symp Dig Tech. 2018;49:1092–1094.
  • Zhang Z, You Z, Chu D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light-SCI Appl. 2014;3:e213.
  • Choi TH, Woo JH, Choi Y, et al. Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals. Opt Express. 2016;24:27569–27576.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Chen KM, Gauza S, Xianyu H, et al. Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. J Disp Technol. 2010;6:49–51.
  • Peng F, Chen H, Gou F, et al. Analytical equation for the motion picture response time of display devices. J Appl Phys. 2017;121:023108.
  • Tu CD, Lin CL, Yan J, et al. Driving scheme using bootstrapping method for blue-phase LCDs. J Disp Technol. 2013;9:3–6.
  • Huang Y, Chen H, Tan G, et al. Optimized blue-phase liquid crystal for field-sequential-color displays. Opt Mater Experss. 2017;7:641–650.
  • Chen Y, Wu ST. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices. J Appl Polym Sci. 2014;131:40556.
  • Li Y, Huang S, Zhou P, et al. Polymer-stabilized blue phase liquid crystals for photonic applications. Adv Mater Technol. 2016;1:1600102.
  • Yoshida H, Kobashi J. Flat optics with cholesteric and blue phase liquid crystals. Liq Cryst. 2016;43:1909–1919.
  • Rao L, Ge Z, Wu ST. Zigzag electrodes for suppressing the color shift of Kerr effect-based liquid crystal displays. J Disp Technol. 2010;6:115–120.
  • Shin YC, Park MK, Kim B, et al. Micropatterned vertical alignment liquid crystal mode with dual threshold voltages for improved off-axis gamma distortion. IEEE T Electron Dev. 2018;65:150–157.
  • Gao Y, Luo Z, Zhu R, et al. A high performance single-domain LCD with wide luminance distribution. J Disp Technol. 2015;11:315–324.
  • Lyu JJ, Sohn J, Kim HY, et al. Recent trends on patterned vertical alignment (PVA) and fringe-field switching (FFS) liquid crystal displays for liquid crystal television applications. J Disp Technol. 2007;3:404–412.
  • Kim SU, Lee BY, Suh JH, et al. Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens. Liq Cryst. 2017;44:364–371.
  • Chen H, Lan YF, Tsai CY, et al. Low-voltage blue-phase liquid crystal display with diamond-shape electrodes. Liq Cryst. 2017;44:1124–1130.
  • Guo Y, Li X, Sun Y, et al. Low gamma shift blue-phase liquid crystal display with electric field induced multi-domain electrode structure. Liq Cryst. 2019;1–13. DOI:10.1080/02678292.2019.1627434
  • Lu R, Wu ST, Ge Z, et al. Bending angle effects on the multi-domain in-plane-switching liquid crystal displays. J Disp Technol. 2005;1:207–216.
  • Xu D, Chen Y, Liu Y, et al. Refraction effect in an in-plane-switching blue phase liquid crystal cell. Opt Express. 2013;21:24721–24735.
  • Rao L, Yan J, Wu ST, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal. Appl Phys Lett. 2011;98:081109.
  • Chu F, Dou H, Li GP, et al. A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes. Liq Cryst. 2018;45:715–720.
  • Lee YJ, Park M, Lee DM, et al. Reduction of the operating voltage of a nanoencapsulated liquid crystal display by using a half-wall structure. Opt Express. 2017;25:409–414.
  • Guo Y, Fu M, Ren Y, et al. Low-voltage blue-phase liquid crystal display with single-penetration electrodes. Liq Cryst. 2017;44:2321–2326.
  • Tian LL, Chu F, Dou H, et al. A transflective polymer-stabilised blue-phase liquid display with partitioned wall-shaped electrodes. Liq Cryst. 2018;45:1259–1263.
  • Chu F, Dou H, Song YL, et al. A transflective blue-phase liquid crystal display with alternate electrodes. Liq Cryst. 2017;44:1316–1320.
  • Rao L, Ge Z, Wu ST, et al. Low voltage blue-phase liquid crystal displays. Appl Phys Lett. 2009;95:231101.
  • Rao L, Cheng HC, Wu ST. Low voltage blue-phase LCDs with double-penetrating fringe fields. J Disp Technol. 2010;6:287–289.
  • Oh SW, Kim AK, Park BW, et al. Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display. J Inf Disp. 2015;16:1–10.
  • Guo Y, Li X, Mu Q, et al. Single electro-optic curve for RGB colours in blue-phase liquid crystal display. Liq Cryst. 2019;46:835–845.
  • Lin YH, Chen HS, Lin HC, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:113505.
  • Yan J, Cheng HC, Gauza S, et al. Extended Kerr effect of polymer-stabilized blue phase liquid crystals. Appl Phys Lett. 2010;96:071105.
  • Gerber PR. Electro-optical effects of a small-pitch blue-phase system. Mol Cryst Liq Cryst. 1985;116:197–201.
  • Ge Z, Rao L, Gauza S, et al. Modeling of blue-phase liquid crystal displays. J Disp Technol. 2009;5:250–256.
  • Ge Z, Gauza S, Jiao M, et al. Electro-optics of polymer-stabilized blue phase liquid crystal displays. Appl Phys Lett. 2009;94:101104.
  • Yan J, Xing Y, Guo Z, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system. Opt Express. 2015;23:15256–15264.
  • Kim SS, Berkeley BH, Kim KH, et al. New technologies for advanced LCD-TV performance. J Soc Inf Display. 2004;12:259–353.
  • Guo Y, Wang Y, Zhang C, et al. Low voltage blue-phase liquid crystal display with insulating protrusion sandwiched between dual-layer electrodes. Liq Cryst. 2019;46:523–534.
  • Chan BH, Choi WK. Three-dimensional corrugated electrode structure for low-voltage high-transmittance blue-phase liquid crystal displays. Liq Cryst. 2019;46:806–815.
  • Choi TH, Park YJ, Kim JW, et al. A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation. Liq Cryst. 2016;43:411–416.
  • Chen Y, Sun Y, Yang G. Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes. Liq Cryst. 2011;38:555–559.
  • Xing Y, Guo Z, Li Q. Reflective blue phase liquid crystal displays with double-side concave-curved electrodes. Liq Cryst. 2018;45:507–512.
  • Guo Y, Wang Y, Zhang C, et al. Blue-phase liquid crystal display with insulating protrusion. Liq Cryst. 2018;45:1585–1593.
  • Hung CC, Hsieh HY, Lin YT, et al. Novel four-transistor pixel circuit using source-follower structure for field-sequential-color blue-phase liquid crystal displays. SID Int Symp Dig Tech. 2017;48:482–485.
  • Tsai CY, Yu FC, Lan YF, et al. A novel blue phase liquid crystal display applying wall-electrode and high driving voltage circuit. SID Int Symp Dig Tech. 2015;46:542–544.
  • Chen HW, Lee JH, Lin BY, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light-SCI Appl. 2018;7:17168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.