530
Views
5
CrossRef citations to date
0
Altmetric
Invited Article

Cholesteric-type cellulosic structures: from plants to applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1937-1949 | Received 08 May 2019, Published online: 24 Jul 2019

References

  • Ball P. Nature’s palette: the science of plant color. Nature. 2007;449:982.
  • Vukusic P, Sambles JR. Photonic structures in biology. Nature. 2003;424:852–855.
  • Burresi M, Cortese L, Pattelli L, et al. Bright-white beetle scales optimise multiple scattering of light. Sci Rep. 2014;4:6075.
  • Parker AR. 515 million years of structural colour. J Opt a-Pure Appl Op. 2000;2:R15–R28.
  • Vignolini S, Rudall PJ, Rowland AV, et al. Pointillist structural color in Pollia fruit. Proc Natl Acad Sci U S A. 2012;109:15712–15715.
  • Fernandes SN, Geng Y, Vignolini S, et al. Structural color and iridescence in transparent sheared cellulosic films. Macromol Chem Phys. 2013;214:25–32.
  • Morris RB. Iridescence from diffraction structures in the wing scales of callophrys rubi, the green hairstreak. J Entomol Ser A Gen Entomol. 1975;49:149–154.
  • Doucet SM, Meadows MG. Iridescence: a functional perspective. J R Soc Interface. 2009;6:S115–S32.
  • Gruson H, Andraud C, de Marcillac WD, et al. Quantitative characterization of iridescent colours in biological studies: a novel method using optical theory. Interface Focus. 2019;9.
  • Prelog V. Chirality in Chemistry. J Mol Catal. 1976;1:159–172.
  • Murugesan YK, Rey AD. Modeling textural processes during self-assembly of plant-based chiral-nematic liquid crystals. Polymers. 2010;2:766–785.
  • Liang H-L, Bay MM, Vadrucci R, et al. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat Commun. 2018;9:4632.
  • Nguyen TD, Sierra E, Eguiraun H, et al. Iridescent cellulose nanocrystal films: the link between structural colour and Bragg’s law. Eur J Phys. 2018;39.
  • Seo HJ, Lee SS, Noh J, et al. Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials. J Mater Chem C. 2017;5:7567–7573.
  • Almeida APC, Canejo JP, Fernandes SN, et al. Cellulose-based biomimetics and their applications. Adv Mater. 2018;30:1703566.
  • Dumanli AG, van der Kooij HM, Kamita G, et al. Digital color in cellulose nanocrystal films. Acs Appl Mater Inter. 2014;6:12302–12306.
  • Fernandes SN, Almeida PL, Monge N, et al. Mind the microgap in iridescent cellulose nanocrystal films. Adv Mater. 2017;29:1603560.
  • Goodby JW. Symmetry and Chirality in Liquid Crystals. In: Demus DJG, Gray GW, Spiess H, et al., editors. Handbook of liquid crystals set. Weinheim: WILEY‐VCH; 1998. p. 115–132.
  • Neville AC, Caveney S. Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol Rev. 1969;44:531–562.
  • Neville AC. Biology of fibrous composites: development beyond the cell membrane. Cambridge, UK: Cambridge University Press; 1993.
  • Bouligand Y. Comparaison De Certains Materiels Biologiques a La Structure Des Cristaux Liquides Cholesteriques. J Microsc-Oxford. 1967;6:A41-+.
  • Bouligand Y. Twisted fibrous arrangements in biological-materials and cholesteric mesophases. Tissue Cell. 1972;4:189.
  • Bouligand Y. Study of mesomorphic textures .2. Polygonal fields in cholesteries. J Phys-Paris. 1972;33:715–736.
  • Bouligand Y. Liquid crystals and biological morphogenesis: ancient and new questions. Cr Chim. 2008;11:281–296.
  • Bouligand Y, Livolant F. The organization of cholesteric spherulites. J Phys-Paris. 1984;45:1899–1923.
  • Bouligand Y. Sur Une Disposition Fibrillaire Torsadee Commune a Plusieurs Structures Biologiques. Cr Hebd Acad Sci. 1965;261:4864–4867.
  • Bouligand Y. Sur L’Existence De “Pseudomorphoses Cholestériques” Chez Divers Organismes Vivants. J Phys Colloques. 1969;30:C4-90-C4-103.
  • Roland JC, Reis D, Vian B, et al. Morphogenesis of plant-cell walls at the supramolecular level - internal geometry and versatility of helicoidal expression. Protoplasma. 1987;140:75–91.
  • Graham RM, Lee DW, Norstog K. Physical and Ultrastructural Basis of Blue Leaf Iridescence in Two Neotropical Ferns. Am J Bot. 1993;80:198–203.
  • Gould KS, Lee DW. Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants. Am J Bot. 1996;83:45–50.
  • Vignolini S, Gregory T, Kolle M, et al. Structural colour from helicoidal cell-wall architecture in fruits of Margaritaria nobilis. J R Soc Interface. 2016;13:20160645.
  • Reis D. Cholesteric-like pattern in plant-cell walls - different expressions. Mol Cryst Liq Cryst. 1987;153:43–53.
  • Rånby BG. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc. 1951;11:158–164.
  • Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–3500.
  • Mukherjee SM, Woods HJ. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta. 1953;10:499–511.
  • Emerton HW, Wrist PE, Sikorski J, et al. Electron-microscopy of degraded cellulose fibres. J Text Inst Trans. 1952;43:T563–T4.
  • Marchessault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillar polysaccharides. Nature. 1959;184:632–633.
  • Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem. 2011;50:5438–5466.
  • Matos Ruiz M, Cavaillé JY, Dufresne A, et al. Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interfaces. 2000;7:117–131.
  • Revol JF, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992;14:170–172.
  • Fleming K,G, Gray D, Matthews S. Cellulose crystallites. Chemistry. 2001;7(9):1831–1835.
  • Fried F, Gilli JM, Sixou P. The cholesteric pitch in lyotropic solutions of a semi-rigid macromolecule: hydroxypropyl-cellulose. Mol Cryst Liq Cryst. 1983;98:209–221.
  • Zugenmaier P. Cellulosic liquid crystals. In: Demus DJG, Gray GW, Spiess H, et al., editors. Handbook of liquid crystals. Vol. 3. Weinheim: WILEY‐VCH; 1998. p. 453–482.
  • Chanzy H, Peguy A, Chaunis S, et al. Oriented cellulose films and fibers from a mesophase system. J Polym Sci. 1980;18:1137–1144.
  • Navard P, Haudin J-M. Rheololgy of mesomorphic solutions of cellulose. Br Polym J. 1980;12:174–178.
  • Patel DL, Gilbert RD. Lyotropic mesomorphic formation of cellulose in trifluoroacetic acid-chlorinated-alkane solvent mixtures at room temperature. J Polym Sci. 1981;19:1231–1236.
  • McCormick CL, Callais PA, Hutchinson BH. Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules. 1985;18:2394–2401.
  • Werbowyj RS, Gray DG. Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol Cryst Liq Cryst. 1976;34:97–103.
  • Tseng S-L, Valente A, Gray DG. Cholesteric liquid crystalline phases based on (acetoxypropyl)cellulose. Macromolecules. 1981;14:715–719.
  • Godinho MH, Gray DG, Pieranski P. Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system. Liq Cryst. 2017;44:2108–2120.
  • Bheda J, Fellers JF, White JL. Phase behavior and structure of liquid crystalline solutions of cellulose derivatives. Colloid Polym Sci. 1980;258:1335–1342.
  • Flory PJ, Gee G Statistical thermodynamics of semi-flexible chain molecules. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences. 1956;234. p. 60–73.
  • Kuhn W. Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe. Kolloid-Zeitschrift. 1936;76:258–271.
  • Shimamura K, White JL, Fellers JF. Hydroxypropylcellulose, a thermotropic liquid crystal: characteristics and structure development in continuous extrusion and melt spinning. J Appl Polym Sci. 1981;26:2165–2180.
  • Gray DG. Liquid crystalline cellulose derivatives. Cellulose Conference. 24 May 1982.
  • Mitov M. Cholesteric liquid crystals in living matter. Soft Matter. 2017;13:4176–4209.
  • Emons AMC, Mulder BM. How the deposition of cellulose microfibrils builds cell wall architecture. Trends Plant Sci. 2000;5:35–40.
  • Tan T, Ribbans B. A bioinspired study on the compressive resistance of helicoidal fibre structures. Proc Math Phys Eng Sci. 2017;473:20170538-.Epub 10/11.
  • Canejo JP, Fernandes SN, Godinho MH, et al. Liquid fibres and their networks from cellulose-based liquid crystalline solutions. Liq Cryst. 2018;45:1987–1995.
  • Dawson C, Vincent JFV, Rocca A-M. How pine cones open. Nature. 1997;390:668.
  • Song K, Yeom E, Lee SJ. Real-time imaging of pulvinus bending in Mimosa pudica. Sci Rep. 2014;4:6466.
  • Forterre Y, Skotheim JM, Dumais J, et al. How the Venus flytrap snaps. Nature. 2005;433:421–425.
  • Lydon J. Silk and Fibers, Collagen. In: Goodby JW, Raynes CT,P, Gleeson H, et al., editors. Handbook of Liquid Crystals. Vol. 7. Weinheim: Wiley‐VCH; 2014. p. 1–53.
  • Li S, Wang KW. Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspir Biomim. 2016;12:011001.
  • Poppinga S, Zollfrank C, Prucker O, et al. Toward a new generation of smart biomimetic actuators for architecture. Adv Mater. 2018;30:1703653.
  • Abraham Y, Tamburu C, Klein E, et al. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J R Soc Interface. 2012;9:640–7.Epub 08/24.
  • Zhao C, Liu QP, Ren LQ, et al. A 3D micromechanical study of hygroscopic coiling deformation in Pelargonium seed: from material and mechanics perspective. J Mater Sci. 2017;52:415–430.
  • Abraham Y, Elbaum R. Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending. New Phytol. 2013;199:584–594.
  • Jung W, Kim W, Kim HY. Self-burial mechanics of hygroscopically responsive awns. Integr Comp Biol. 2014;54:1034–1042.
  • Elbaum R, Gorb S, Fratzl P. Structures in the cell wall that enable hygroscopic movement of wheat awns. J Struct Biol. 2008;164:101–107.
  • Almeida APC, Querciagrossa L, Silva PES, et al. Reversible water driven chirality inversion in cellulose-based helices isolated from Erodium awns. Soft Matter. 2019;15:2838–2847.
  • Geng Y, Almeida PL, Fernandes SN, et al. A cellulose liquid crystal motor: a steam engine of the second kind. Sci Rep. 2013;3:1028.
  • Wu T, Li J, Li J, et al. A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J Mater Chem C. 2016;4:9687–9696.
  • Bettotti P, Maestri CA, Guider R, et al. Dynamics of hydration of nanocellulose films. Adv Mater Interfaces. 2016;3:1500415.
  • Zhang K, Geissler A, Standhardt M, et al. Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions. Sci Rep. 2015;5:11011.
  • Kose O, Tran A, Lewis L, et al. Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun. 2019;10:510.
  • Natarajan B, Gilman JW. Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties. Philos Trans R Soc A Math Phys Eng Sci. 2018;376:20170050.
  • De La Cruz JA, Liu Q, Senyuk B, et al. Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics. 2018;5:2468–2477.
  • Dumanli AG, Kamita G, Landman J, et al. Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater. 2014;2:646–650.
  • Espinha A, Guidetti G, Serrano MC, et al. Shape memory cellulose-based photonic reflectors. Acs Appl Mater Inter. 2016;8:31935–31940.
  • Fernandes SN, Almeida PL, Monge N, et al. Mind the microgap in iridescent cellulose nanocrystal films. Adv Mater. 2017;29:1603560.
  • Kamita G, Frka-Petesic B, Allard A, et al. Biocompatible and sustainable optical strain sensors for large-area applications. Adv Opt Mater. 2016;4:1950–1954.
  • Sydney Gladman A, Matsumoto EA, Nuzzo RG, et al. Biomimetic 4D printing. Nat Mater. 2016;15:413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.