1,378
Views
59
CrossRef citations to date
0
Altmetric
Invited Article

From colloids in liquid crystals to colloidal liquid crystals

ORCID Icon
Pages 2057-2074 | Received 10 May 2019, Published online: 23 Aug 2019

References

  • Collings PJ, Hird M. Introduction to liquid crystals: chemistry and physics. London: Taylor&Francis; 1997.
  • Singh S. Liquid crystals: fundamentals. Singapore: World Scientific; 2002.
  • de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press; 1993.
  • Chandrasekhar S. Liquid crystals. 2nd ed. Cambridge: Cambridge University Press; 1992.
  • Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCH; 2003.
  • Petrov G. The lyotropic state of matter. London: Taylor&Francis; 1999.
  • Figueiredo Neto AM, Salinas SRA. The physics of lyotropic liquid crystals. Oxford: Oxford University Press; 2005.
  • Lagerwall JPF, Scalia G, eds. Liquid crystals with nano and microparticles. Singapore: World Scientific; 2017.
  • Musevic I. Liquid crystal colloids. Cham: Springer; 2017.
  • Sonin AS. Inorganic lyotropic liquid crystals. J Mater Chem. 1998;8:2557.
  • Dierking I, Al-Zangana S. Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials. 2017;7:305.
  • Dierking I, Blenkhorn W, Credland E, et al. Stabilising liquid crystalline blue phases. Soft Matter. 2012;8:4355.
  • Li Y. Polymer stabilized Blue Phase liquid crystal displays. In: Dierking I, editor. Polymer-modified liquid crystals. Cambridge: Royal Society of Chemistry; 2019. ch. 13, pp. 292.
  • Reznikov Y, Buchnev O, Tereshchenko O, et al. Ferroelectric nematic suspension. Appl Phys Lett. 2003;82:1917.
  • Garbovskiy Y, Glushchenko A. Ferroelectric nanoparticles in liquid crystals: recent progress and current challenges. Nanomaterials. 2017;7:361.
  • Mertelj A, Lisjak D, Drofenik M, et al. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 2013;504:237.
  • Lynch MD, Patrick DL. Organizing carbon nanotubes with liquid crystals. Nano Lett. 2002;2:1197.
  • Dierking I, Scalia G, Morales P, et al. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv Mater. 2004;16:865.
  • Dierking I, Scalia G, Morales P. Liquid crystal–carbon nanotube dispersions. J Appl Phys. 2005;97:044309.
  • Al-Zangana S, Turner M, Dierking I. A comparison between size dependent paraelectric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. J Appl Phys. 2017;121:085105.
  • Dierking I, Casson K, Hampson R. Reorientation dynamics of liquid crystal-nanotube dispersions. Jpn J Appl Phys. 2008;47:6390.
  • Scalia G, von Buehler C, Haegele C, et al. Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals. Soft Matter. 2008;4:570.
  • Kumar S, Bisoyi HK. Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew Chem Int Ed. 2007;46:1501.
  • Yakemseva M, Dierking I, Kapernaum N, et al. Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals. Eur Phys J E. 2014;37. DOI:10.1140/epje/i2014-14007-4
  • Crooker PP. In: Kitzerow H-S, Bahr S, editors. Chirality in liquid crystals. Berlin: Springer Verlag; 2001. ch. 7, pp. 186.
  • Seideman T. The liquid-crystalline blue phases. Rep Prog Phys. 1990;53:659.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64.
  • Hisakado Y, Kikuchi H, Nagamura T, et al. Large electro‐optic kerr effect in polymer‐stabilized liquid‐crystalline blue phases. Adv Mater. 2005;17:96.
  • Yan J, Wu S-T. Polymer-stabilized blue phase liquid crystals: a tutorial. Opt Mater Express. 2011;1:1527.
  • Kasch N, Dierking I, Turner M. Stabilization of the liquid crystalline blue phase by the addition of short-chain polystyrene. Soft Matter. 2013;9:4789.
  • Coles HJ, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436:997.
  • Kalavalpalli T, Draude A, Dierking I. in preparation.
  • Podoliak N, Buchnev O, Buluy O, et al. Macroscopic optical effects in low concentration ferronematics. Soft Matter. 2011;7:4742.
  • Toth-Katona T, Salamon P, Eber N, et al. High concentration ferronematics in low magnetic fields. J Magn Magn Mater. 2014;372:117.
  • Mertelj A, Osterman N, Lisjak D, et al. Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal. Soft Matter. 2014;10:9065.
  • Podoliak N, Buchnev O, Bavykin DV, et al. Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory. J Colloid Interface Sci. 2012;386:158.
  • Shuai M, Klittnick A, Shen Y, et al. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nature Commun. 2015;7:10394.
  • Yoshida S, Dierking I. in preparation.
  • Brochard F, de Gennes PG. Theory of magnetic suspensions in liquid crystals. J Phys. 1970;31:691.
  • Mertelj A, Lisjak D. Ferromagnetic nematic liquid crystals. Liq Cryst Rev. 2017;5:1.
  • Dierking I, Heberle M, Osipov MA, et al. Ordering of ferromagnetic nanoparticles in nematic liquid crystals. Soft Matter. 2017;13:4636.
  • Stark H. Physics of colloidal dispersions in nematic liquid crystals. Phys Rep. 2001;351:387.
  • Musevic I, Skarabot M. Self-assembly of nematic colloids. Soft Matter. 2008;4:195.
  • Tkalec U, Skarabot M, Musevic I. Interactions of micro-rods in a thin layer of a nematic liquid crystal. Soft Matter. 2008;4:2402.
  • Takezoe H, Eremin A. Bent-shaped liquid crystals. Boca Baton: Taylor & Francis, CRC Press; 2016.
  • Takezoe H, Takanishi Y. Bent-core liquid crystals: their mysterious and attractive world. Jpn J Appl Phys. 2006;45:597.
  • Link DR, Natale G, Shao R, et al. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science. 1997;276:1942.
  • Pelzl P. Preliminary communication helical superstructures in a novel smectic mesophase formed by achiral banana-shaped molecules. Liq Cryst. 1999;26:135.
  • Jakli A, Krüerke D, Nair GG. Liquid crystal fibers of bent-core molecules. Phys Rev E. 2003;67:051702.
  • Pelzl G, Diele S, Jakli A, et al. The mysterious B7 phase: from its discovery up to the present stage of research. Liq Cryst. 2006;33:1513.
  • Deb R, Oneill M, Rao NVS, et al. Fluorescence confocal polarizing microscopy of a fluorescent bent-core liquid crystal exhibiting polarization splay modulated (B7) structures and defects. ChemPhysChem. 2015;16:243.
  • Tamba MG, Salili SM, Zhang C, et al. A fibre forming smectic twist–bent liquid crystalline phase. RSC Adv. 2015;5:11207.
  • Yoon D-K, Deb R, Körblova E, et al. Clark NA organization of polarization splay modulated (B7) smectic phases by confinement in channels. PNAS. 2010;107:21311.
  • Stamatoiu O, Dierking I. B7 liquid crystal filament growth in presence of carbon nanotubes. ChemPhysChem. 2019;20:116.
  • Freundlich H. The birefringence of vanadium pentoxide, Z. Elektrochem. 1916;22:27.
  • Onsager L. The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci. 1949;51:627.
  • Bolhuis PG, Frenkel D. Tracing the phase boundaries of hard spherocylinders. J Chem Phys. 1997;106:666.
  • Saliba S, Mingotaud C, Kahn ML, et al. Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale. 2013;5:6641.
  • Chen W-T, Chen P-S, Chao C-Y. Effect of doped insulating nanoparticles on the electro-optical characteristics of nematic liquid crystals. Jpn J Appl Phys. 2009;48:15006.
  • Singh UB, Dhar R, Dabrowski R, et al. Enhanced electro-optical properties of a nematic liquid crystals in presence of BaTiO3 nanoparticles. Liq Cryst. 2014;41:953.
  • Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater. 2007;17:483.
  • Badaire S, Zakri C, Maugey M, et al. Liquid crystals of DNA‐stabilized carbon nanotubes. Adv Mater. 2005;17:1673.
  • Song W, Kinloch IA, Windle AH. Nematic liquid crystallinity of multiwall carbon nanotubes. Science. 2003;302:1363.
  • Song W, Windle AH. Isotropic−nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules. 2005;38:6181.
  • Li LS, Walda J, Manna L, et al. Semiconductor nanorod liquid crystals. Nano Lett. 2002;2:557.
  • Lemaire BJ, Davidson P, Ferre J, et al. Outstanding magnetic properties of nematic suspensions of goethite (α-FeOOH) nanorods. Phys Rev Lett. 2002;88:125507.
  • Tritschler U, Zlotnikov I, Keckeis P, et al. Optical properties of self-organized gold nanorod-polymer hybrid films. Langmuir. 2014;30:13781.
  • Xu T, Davis VA. Rheology and shear-induced textures of silver nanowire lyotropic liquid crystals. J Nanomat. 2015;2015:939587.
  • Li XP, Yang CL, Jia D, et al. Wide-spectrum optical hyperbolic metamaterial based on reverse hexagonal lyotropic liquid crystal. Opt Commun. 2013;298:141.
  • Murali S, Xu T, BD M, et al. Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles. Langmuir. 2010;26:11176.
  • Takai A, Yamauchi Y, Kuroda K. Facile formation of single crystalline Pt nanowires on a substrate utilising lyotropic liquid crystals consisting of cationic surfactants. J Mater Chem. 2009;19:4205.
  • Zhao JK, Chen X. Electrodeposition of platinum nanowires in lamellar lyotropic liquid crystal. Acta Chim Sinica. 2007;65:803.
  • Zhang SJ, Pelligra CI, Keskar G, et al. Liquid crystalline order and magnetocrystalline anisotropy in magnetically doped semiconducting ZnO nanowires. ACS Nano. 2011;10:8357.
  • Yuan JY, Xu YY, Walther A, et al. Water-soluble organo-silica hybrid nanowires. Nat Mater. 2008;7:718.
  • Zhao JK, Chen X, Zui ZM, et al. Fabrication and assembling of nanomaterials templated by lyotropic liquid crystal. Prog Chem. 2003;15:451.
  • Zugenmaier P. Crystalline cellulose and cellulose derivatives. Berlin, Germany: Springer; 2010.
  • Rojas OJ. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Cham, Switzerland: Springer; 2016.
  • George J, Sabapathi SN. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl. 2015;8:45.
  • Gray D, Mu DX. Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials. 2015;8:7873.
  • Dong XM, Kimura T, Revol JF, et al. Effects of ionic strength on the isotropic−chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir. 1996;12:2076.
  • Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 2005;6:1048.
  • Ureña-Benavides EE, Ao G, Davis VA, et al. Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules. 2011;44:8990.
  • Lagerwall JPF, Schütz C, Salajkova M, et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014;6:e80.
  • Honorato-Rios C, Kuhnhold A, JR B, et al. Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions. Front Mater. 2016;3:21.
  • Gray D. Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials. 2016;6:213.
  • Wu Q, Meng Y, Wang S, et al. Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci. 2014;131:40525.
  • Park JH, Noh J, Schütz C, et al. Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem. 2014;15:1477.
  • Wilts BD, Dumanli AG, Middleton R, et al. Chiral optics of helicoidal cellulose nanocrystal films. APL Photonics. 2017;2:040801.
  • Sun JH, Zhang CH, Yuan ZW, et al. Composite films with ordered carbon nanotubes and cellulose nanocrystals. J Phys Chem C. 2017;121:8976.
  • Nguyen TD, Hamad WY, MacLachlan MJ. Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation. Adv Funct Mater. 2014;24:777.
  • Liu Q, Campbell MG, Evans JS, et al. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals. Adv Mater. 2014;26:7178.
  • Chu G, Wang X, Chen T, et al. Optically tunable chiral plasmonic guest–host cellulose films weaved with long-range ordered silver nanowires. ACS Appl Mater Interfaces. 2015;7:11863.
  • Livolant F, Leforestier A. Condensed phases of DNA: structures and phase transitions. Prog Polym Sci. 1996;21:1115.
  • Strzelecka TE, Davidson MW, Rill RL. Multiple liquid crystal phases of DNA at high concentrations. Nature. 1988;331:457.
  • Livolant F, Levelut AM, Doucet J, et al. The highly concentrated liquid-crystalline phase of DNA is columnar hexagonal. Nature. 1989;339:724.
  • Leforstier A, Livolant F. DNA liquid crystalline blue phases. Electron microscopy evidence and biological implications. Liq Cryst. 1994;17:651.
  • Zanchetta G, Nakata M, Buscaglia M, et al. Liquid crystal ordering of DNA and RNA oligomers with partially overlapping sequences. J Phys Condens Matter. 2008;20:494214.
  • Zanchetta G, Nakata M, Buscaglia M, et al. Phase separation and liquid crystallization of complementary sequences in mixtures of nanoDNA oligomers. Proc Natl Acad Sci. 2008;105:1111.
  • Bellini T, Zanchetta G, Fraccia TP, et al. Liquid crystal self-assembly of random-sequence DNA oligomers. Proc Natl Acad Sci. 2012;109:1110.
  • Fraden S, Maret G, Caspar DLD. Angular correlations and the isotropic-nematic phase transition in suspensions of tobacco mosaic virus. Phys Rev E. 1993;48:2816.
  • Graf H, Löwen H. Phase diagram of tobacco mosaic virus solutions. Phys Rev E. 1999;59:1932.
  • Gabriel J-CP, Davidson P. New trends in colloidal liquid crystals based on mineral moieties. Adv Mater. 2000;12:9.
  • Gabriel J-CP, Sanchez C, Davidson P. Observation of nematic liquid-crystal textures in aqueous gels of smectite clays. J Phys Chem. 1996;100:11139.
  • Miyamoto N, Yamamoto S. Inorganic nanosheet liquid crystals: self-assembled structures in dispersions of two-dimensional inorganic polymers. Kobunshi Ronbunshu. 2016;73:262.
  • Nakato T, Miyamoto N. Liquid crystalline behavior and related properties of colloidal systems of inorganic oxide nanosheets. Materials. 2009;2:1734.
  • Veerman JAC, Frenkel D. Phase behavior of disklike hard-core mesogens. Phys Rev A. 1992;45:5632.
  • Michot LJ, Bihannic I, Maddi S, et al. Liquid-crystalline aqueous clay suspensions. Proc Natl Acad Sci. 2006;103:16101.
  • Langmuir I. The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J Chem Phys. 1938;6:873.
  • Kajiwara K, Donkai N, Hiragi Y, et al. Lyotropic mesophase of imogolite, 1. Effect of polydispersity on phase diagram. Makromol Chem. 1986;187:2883.
  • Kajiwara K, Donkai N, Fujiyoshi Y, et al. Lyotropic mesophase of imogolite, 2. Microscopic observation of imogolite mesophase. Makromol Chem. 1986;187:2895.
  • Miyamoto N, Iijima H, Ohkubo H, et al. Liquid crystal phases in the aqueous colloids of size-controlled fluorinated layered clay mineral nanosheets. Chem Commun. 2010;46:4166.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666.
  • Blake P, Brimicombe PD, Nair RR, et al. Graphene-based liquid crystal device. Nano Lett. 2008;8:1704.
  • Brimicombe PD, Gleeson HF. private communication.
  • Behabtu N, Lomeda JR, Green MJ, et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol. 2010;5:406.
  • Kim JE, Han TH, Lee SH, et al. Graphene oxide liquid crystals. Angew Chem Int Ed. 2011;50:3043.
  • Xu Z, Gao ZC. Aqueous liquid crystals of graphene oxide. ACS Nano. 2011;5:2908.
  • Lin F, Tong X, Wang YA, et al. Graphene oxide liquid crystals: synthesis, phase transition, rheological property, and applications in optoelectronics and display. Nanoscale Res Lett. 2015;10:435.
  • Hogan BT, Kovalska E, Craciun MF, et al. 2D material liquid crystals for optoelectronics and photonics. J Mater Chem C. 2017;5:11185.
  • Wang F, Wang HY, Mao J. Aligned-graphene composites: a review. J Mater Sci. 2019;54:36.
  • Narayan R, Kim JE, Kim JY, et al. Graphene oxide liquid crystals: discovery, evolution and applications. Adv Mater. 2016;28:3045.
  • Sasikala SP, Lim J, Kim IH, et al. Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chem Soc Rev. 2018;47:6013.
  • Al-Zangana S, Iliut M, Turner M, et al. Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv Optical Mater. 2016;4:1541.
  • Al-Zangana S, Iliut M, Boran G, et al. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide. Sci Rep. 2016;6:31885.
  • Al-Zangana S, Iliut M, Turner M, et al. Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions. 2D Mater. 2017;4:041004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.