555
Views
8
CrossRef citations to date
0
Altmetric
Article

Synthesis and characterization of two series of pressure-sensitive cholesteric liquid crystal elastomers with optical properties

, , , , , & show all
Pages 143-153 | Received 10 May 2019, Accepted 08 Jul 2019, Published online: 29 Jul 2019

References

  • DL T, Keller P, Naciri J, et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules. 2001;34(17):5868–5875.
  • Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, et al. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3(5):307.
  • Warner M, Terentjev EM. Liquid crystal elastomers. Oxford: Oxford University Press; 2007.
  • TJ W, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14(11):1087.
  • Bera T, EJ F, JA M, et al. Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts. ACS Appl Mater Interfaces. 2015;7(26):14528–14535.
  • Neufeld RAE, Shahsavan H, Zhao BX, et al. Simulation-based design of thermally-driven actuators using liquid crystal elastomers. Liq Cryst. 2018;45(7):1010–1022.
  • Lu H, Qiu L, Zhang G, et al. Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation. J Mater Chem C. 2014;2(8):1386–1389.
  • Seo J, JW C, JE K, et al. Photoisomerization-induced gel-to-sol transition and concomitant fluorescence switching in a transparent supramolecular gel of a cyanostilbene derivative. Chem Sci. 2014;5(12):4845–4850.
  • Guo Z, Zhang Z, Zhang W, et al. Color-switchable, emission-enhanced fluorescence realized by engineering C-dot@ C-dot nanoparticles. ACS Appl Mater Interfaces. 2014;6(23):20700–20708.
  • Buguin A, MH L, Silberzan P, et al. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J Am Chem Soc. 2006;128(4):1088–1089.
  • CM S, Naciri J, BR R, et al. Electrically induced twist in smectic liquid–crystalline elastomers. J Phys Chem A. 2016;120(26):6368–6372.
  • Yang H, Buguin A, JM T, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J Am Chem Soc. 2009;131(41):15000–15004.
  • TH W, ZP P, CM M, et al. Programmable liquid crystal elastomers prepared by thiol–ene photopolymerization. ACS Macro Lett. 2015;4(9):942–946.
  • MO S, AH T, CA S, et al. Thiol-acrylate main-chain liquid-crystalline elastomers with tunable thermomechanical properties and actuation strain. J Polym Sci B Polym Phys. 2017;55(2):157–168.
  • TH W, ME M, JJ W, et al. Voxelated liquid crystal elastomers. Science. 2015;347(6225):982–984.
  • RB W, HX Z, YN H, et al. Photoluminescent nematic liquid crystalline elastomer actuators. Liq Cryst. 2014;41(12):1821–1830.
  • Torras N, JE M, KE Z, et al. Gas‐pressure molding‐based fabrication of smart actuators from nematic liquid‐crystalline elastomer. Macromol Mater Eng. 2014;299(10):1163–1169.
  • Schenning A, CMW B, DJ B, et al. The role of supramolecular chemistry in stimuli responsive and hierarchically structured functional organic materials. Chim Oggi. 2014;32:78–80.
  • Kim C, Mukherjee S, Luchette P, et al. Director orientation in deformed liquid crystal elastomer microparticles. Soft Mater. 2014;12(2):159–165.
  • Torras N, K E Z, CJ C, et al. Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens Actuators A. 2014;208:104–112.
  • Xie P, Zhang R. Liquid crystal elastomers, networks and gels: advanced smart materials. J Mater Chem. 2005;15(26):2529–2550.
  • Wermter H, Finkelmann H. Liquid crystalline elastomers as artificial muscles. e-Polymers. 2001;1:1.
  • Palagi S, AG M, SY R, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater. 2016;15(6):647.
  • Rogóż M, Zeng H, Xuan C, et al. Light-driven soft robot mimics caterpillar locomotion in natural scale. Adv Opt Mater. 2016;4(11):1689–1694.
  • Grzechnik A, AVG C, GH W, et al. An experimental and theoretical investigation of phonons and lattice instabilities in metastable decompressed perovskite. J Phys. 1998;10(1):221.
  • Varanytsia A, Nagai H, Urayama K, et al. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain. Sci Rep. 2015;5:17739.
  • Hu J-S, Song Z-W, Liu C, et al. Influence of different nematic crosslinking unit on mesomorphism of side-chain cholesteric elastomers containing menthyl groups. Colloid Polym Sci. 2010;288(8):851–858.
  • Jiang Y, Gao Y, Zeng S, et al. Synthesis and characterisation of novel side-chain chiral liquid crystalline elastomers with long dimer mesogens. Liq Cryst. 2018;45(9):1353–1365.
  • Mahajan LH, Ndaya D, Deshmukh P, et al. Optically active elastomers from liquid crystalline comb copolymers with dual physical and chemical cross-links. Macromolecules. 2017;50(15):5929–5939.
  • Nagai H, Liang X, Nishikawa Y, et al. Periodic surface undulation in cholesteric liquid crystal elastomers. Macromolecules. 2016;49(24):9561–9567.
  • Nagai H, Urayama K. Thermal response of cholesteric liquid crystal elastomers. Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(2):022501.
  • Noh K-G, Park S-Y. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer. Adv Funct Mater. 2018;28:22.
  • Zhang B-Y, Hu J-S, Wang B, et al. Synthesis and characterization of side-chain cholesteric elastomers derived from an isosorbide crosslinking agent. Colloid Polym Sci. 2007;285(15):1683–1690.
  • Brannum MT, Steele AM, Venetos MC, et al. Light control with liquid crystalline elastomers. Adv Opt Mater. 2019;7:6.
  • Finkelmann H, S T K, Muñoz A, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13(14):1069–1072.
  • Urayama K, Mashita R, Kobayashi I, et al. Stretching-induced director rotation in thin films of liquid crystal elastomers with homeotropic alignment. Macromolecules. 2007;40(21):7665–7670.
  • Papadopoulos P, Heinze P, Finkelmann H, et al. Electromechanical properties of smectic C* liquid crystal elastomers under shear. Macromolecules. 2010;43(16):6666–6670.
  • Varanytsia A, Nagai H, Urayama K, et al. Accurate control of laser emission from cholesteric liquid crystal elastomers. Mol Cryst Liq Cryst. 2017;647(1):216–222.
  • Ube T, Yoda T, Ikeda T. Fabrication of photomobile polymer materials with phase-separated structure of crosslinked azobenzene liquid-crystalline polymer and poly(dimethylsiloxane). Liq Cryst. 2018;45(13–15):2269–2273.
  • Skacej G. Elastocaloric effect in liquid crystal elastomers from molecular simulations. Liq Cryst. 2018;45(13–15):1964–1969.
  • Yamamoto T, Muramatsu Y, BL L, et al. Preparation of new main-chain type polyanthraquinones. Chemical reactivity, packing structure, piezochromism, conductivity, and liquid crystalline and photonic properties of the polymers. Chem Mater. 2003;15(23):4384–4393.
  • Meng F-B, He X-Z, Zhang X-D, et al. Effect of terminal perfluorocarbon chain containing mesogens on phase behaviors of chiral comb-like liquid crystalline polymers. Colloid Polym Sci. 2011;289(8):955–965.
  • Zhang Y, He X-Z, Zheng J-J, et al. Side-chain cholesteric liquid-crystalline elastomers containing azobenzene derivative as cross-linking agent – synthesis and characterisation. Liq Cryst. 2017;45(6):912–923.
  • Lin P, Cong Y, Zhang B. Dispersing carbon nanotubes by chiral network surfactants. ACS Appl Mater Interfaces. 2015;7(12):6724–6732.
  • He X-Z, Zhang B-Y, Meng F-B, et al. Effect of the length of the carbochain on the phase behavior of side-chain cholesteric liquid-crystalline elastomers. J Appl Polym Sci. 2005;96(4):1204–1210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.