258
Views
2
CrossRef citations to date
0
Altmetric
Article

Doping effects of fluorinated chiral dopant in blue phase liquid crystals and its electro-optical behavior

, &
Pages 284-290 | Received 18 Jun 2019, Accepted 16 Jul 2019, Published online: 31 Jul 2019

References

  • Zheng ZG, Li Y, Bisoyi HK, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature. 2016;531:352.
  • Wang L, Urbas AM, Li Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Adv Mater. 2018;30:1801335.
  • Gerber P. Electro-optical effects of a small-pitch blue phase system. Mol Cryst Liq Cryst. 1985;116:197–206.
  • Kikuchi H, Yokota M, Hisakado Y, et al. Polymer-stabilized liquid crystal blue phases. Nat Mater. 2002;1:64–68.
  • Hisakado Y, Kikuchi H, Nagamura T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv Mater. 2005;17:96–98.
  • Yan J, Rao L, Jiao M, et al. Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J Mater Chem. 2011;21:7870–7877.
  • Higashiguchi K, Yasui K, Kikuchi H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope. J Am Chem Soc. 2008;130:6326–6327.
  • Henrich O, Stratford K, Cates M, et al. Structure of blue phase III of cholesteric liquid crystals. Phys Rev Lett. 2011;106:10780.
  • Tanaka S, Yoshida H, Kawata Y, et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy. Sci Rep. 2015;5:16180.
  • Fujii S, Sasaki Y, Orihara H. Nonlinear rheology and fracture of disclination network in cholesteric blue phase III. Fluids. 2018;3:34.
  • Kim MS, Chien LC. Topology-mediated electro-optical behaviour of a wide-temperature liquid crystalline amorphous blue phase. Soft Matter. 2015;11:8013–8018.
  • Rao L, Ge Z, Wu ST, et al. Low voltage blue-phase liquid crystal displays. Appl Phys Lett. 2009;95:231101.
  • Li G, Dou H, Chu F, et al. Low voltage and high transmittance transflective blue-phase liquid crystal display with opposite polar electrodes. Liq Cryst. 2018;45(3):410–414.
  • Song Y, Li G, Chu F, et al. Transflective blue-phase liquid crystal display with polar opposite electrodes. Liq Cryst. 2018;45(10):1535–1539.
  • Wang M, Zou C, Li C, et al. Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application. Adv Opt Mater. 2018;6:1800409.
  • Liu Q, Luo D, Zhang X, et al. Refractive index and absorption coefficient of blue phase liquid crystal in terahertz band. Liq Cryst. 2017;44:348–354.
  • Chen C, Li C, Jau H-C, et al. Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals. Acs Photonics. 2015;2:1524–1531.
  • Chen Z, Hu D, Chen X, et al. Templated sphere phase liquid crystals for tunable random lasing. Nanomaterials. 2017;7:392.
  • Dou H, Chu F, Wang L, et al. A polarisation-free blue phase liquid crystal lens with enhanced tunable focal length range. Liq Cryst. 2019;46(6):963–969.
  • Khoo IC, Lin TH. Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals. Opt Lett. 2012;37:3225–3227.
  • Gao L, Zheng Z, Zhu J, et al. Dual-period tunable phase grating based on a single in-plane switching. Opt Lett. 2016;41:3775–3778.
  • Kikuchi H. Liquid crystalline blue phases. Berlin, Heidelberg: Springer; 2007. p. 106.
  • Kakisaka K, Higuchi H, Okumura Y, et al. A fluorinated binaphthyl chiral dopant for fluorinated liquid crystal blue phases. J Mater Chem C. 2014;2:6467–6470.
  • He W, Li M, Liu S, et al. Synthesis of chiral azobenzene derivatives and the performance in photochemical control of blue phase liquid crystal. Liq Cryst. 2018;45(3):370–380.
  • Lee J, Kim A, Hong S. Selective stabilisation of blue phase liquid crystal induced by distinctive geometric structure of additives. Liq Cryst. 2018;45(2):230–237.
  • Ni S, Li H, Li S, et al. Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets. J Mater Chem C. 2014;2:1730–1735.
  • Li X, Yang W, Yuan C, et al. Enhanced low-temperature electro-optical Kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization. Sci Rep. 2017;7:10383.
  • Gao L, Li X, Du X, et al. High dielectric polymer and its application on electro-optical Kerr effect of blue phase liquid crystal. Appl Phys Lett. 2018;113:221907.
  • De Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford, UK: Clarendon; 1993. p. 310–312.
  • Yan J, Wu ST. Polymer-stabilized blue phase liquid crystals: a tutorial. Opt Mater Express. 2011;1:1527–1535.
  • Archbold CT, Davis EJ, Mandle RJ, et al. Chiral dopants and the twist-bend nematic phase–induction of novel mesomorphic behaviour in an apolar bimesogen. Soft Matter. 2015;11:7547–7557.
  • Coles HJ, Pivnenko MN. Liquid crystal ‘blue phases’ with a wide temperature range. Nature. 2005;436:997.
  • Hsieh PJ, Chen HM. Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers. Liq Cryst. 2015;42:216–221.
  • Yang DK, Crooker PP. Chiral-racemic phase diagrams of blue-phase liquid crystals. Phys Rev A. 1987;35:4419.
  • Anisimov MA, Agayan VA, Collings PJ. Nature of the Blue-Phase-III–isotropic critical point: an analogy with the liquid-gas transition. Phys Rev E. 1998;57:582.
  • Karatairi E, Rožič B, Kutnjak Z, et al. Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys Rev E. 2010;81:041703.
  • Fan H, Cui J, Wang Q. High transmittance blue-phase liquid crystal display with improved protrusion electrodes. Liq.Cryst. 2015;42:481–485.
  • Li Y, Chen Y, Sun J, et al. Dielectric dispersion on the Kerr constant of blue phase liquid crystals. Appl Phys Lett. 2011;99:181126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.