1,674
Views
7
CrossRef citations to date
0
Altmetric
Invited Article

Nuclear magnetic resonance studies of translational diffusion in thermotropic ionic liquid crystals

Pages 1975-1985 | Received 17 Apr 2019, Published online: 31 Jul 2019

References

  • Goossens K, Lava K, Bielawski CW, et al. Ionic liquid crystals: versatile materials. Chem Rev. 2016;116:4643–4807.
  • Fernandez AA, Kouwer PHJ. Key developments in ionic liquid crystals. Int J Mol Sci. 2016;17:731.
  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Materials. 2011;4:206–259.
  • Kato T, Yoshio M, Ichikawa T, et al. Transport of ions and electrons in nanostructured liquid crystals. Nat Rev Mater. 2017;2:17001.
  • Lindblom G, Orädd G. NMR studies of translational diffusion in lyotropic liquid crystals and lipid membranes. Prog Nucl Magn Reson Spectrosc. 1994;26:483–515.
  • Orädd G, Lindblom G. Lateral diffusion studied by pulsed field gradient NMR on oriented lipid membranes. Magn Reson Chem. 2004;42:123–131.
  • Dvinskikh SV, Furó I. Nuclear magnetic resonance studies of translational diffusion in thermotropic liquid crystals. Russ Chem Rev. 2006;75:497–506.
  • Cifelli M, Veracini CA. Translational diffusion in thermotropic smectic phases. Mol Cryst Liq Cryst. 2013;576:127–134.
  • Moscicki JK, Shin Y-K, Freed JH. Translational diffusion in a smectic-A phase by electron spin resonance imaging: the free-volume model. J Chem Phys. 1993;99:634–649.
  • Chmielewski AG. Anisotropy of radiotracer diffusion in some nematic liquid-crystals. Mol Cryst Liq Cryst. 1992;212:205–215.
  • Daoud M, Rais K, Gharbia M, et al. Elliptical diffusion of dye in hexagonal columnar polycatenar mesophases. Liq Cryst. 1999;26:1079–1084.
  • Belushkin AV, Cook MJ, Frezzato D, et al. A quasi-elastic neutron scattering study of molecular dynamics in a columnar liquid crystal. Mol Phys. 1998;93:593–607.
  • Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–292.
  • Stilbs P. Fourier Transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc. 1987;19:1–45.
  • Callaghan PT. Translational dynamics and magnetic resonance. Oxford: Oxford University Press; 2011.
  • Price WS. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part I. Basic theory. Concepts Magn Reson. 1997;9:299–336.
  • Jerschow A, Muller N. Suppression of convection artifacts in stimulated-echo diffusion experiments. Double-stimulated-echo experiments. J Magn Reson. 1997;125:372–375.
  • Gibbs SJ, Johnson CS. A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J Magn Reson. 1991;93:395–402.
  • Dvinskikh SV, Furó I. Cross-relaxation effects in stimulated-echo-type PGSE NMR experiments by bipolar and monopolar gradient pulses. J Magn Reson. 2000;146:283–289.
  • Cifelli M. A practical tutorial to set up NMR diffusometry equipment: application to liquid crystals. Magn Reson Chem. 2014;52:640–648.
  • Zhang W, Cory DG. First direct measurement of the spin diffusion rate in a homogeneous solid. Phys Rev Lett. 1998;80:1324–1327.
  • Dvinskikh SV, Furó I, Sandström D, et al. Deuterium stimulated-echo-type PGSE NMR experiments for measuring diffusion: application to a liquid crystal. J Magn Reson. 2001;153:83–91.
  • Cifelli M, Domenici V, Dvinskikh SV, et al. Translational self-diffusion in the synclinic to anticlinic phases of a ferroelectric liquid crystal. Soft Matter. 2010;6:5999–6003.
  • Cifelli M, Domenici V, Dvinskikh SV, et al. Translational self-diffusion in the smectic phases of ferroelectric liquid crystals: an overview. Phase Transit. 2012;85:861–871.
  • Dvinskikh SV, Furo I. Anisotropic self-diffusion in nematic, smectic-A, and reentrant nematic phases. Phys Rev E. 2012;86:031704.
  • Dvinskikh SV. Pulsed-field-gradient NMR study of anisotropic molecular translational diffusion in nOCB liquid crystals. Appl Magn Reson. 2013;44:169–180.
  • Cifelli M, Domenici V, Dvinskikh SV, et al. The twist-bend nematic phase: translational self-diffusion and biaxiality studied by 1H nuclear magnetic resonance diffusometry. Liq Cryst. 2017;44:204–218.
  • Cifelli M, Domenici V, Kharkov BB, et al. Study of translational diffusion anisotropy of ionic smectogens by NMR diffusometry. Mol Cryst Liq Cryst. 2015;614:30–38.
  • Dvinskikh SV, Sitnikov R, Furó I. 13C PGSE NMR experiment with heteronuclear dipolar decoupling to measure diffusion in liquid crystals and solids. J Magn Reson. 2000;142:102–110.
  • Dvinskikh SV, Furó I. Combining PGSE NMR with homonuclear dipolar decoupling. J Magn Reson. 2000;144:142–149.
  • Cifelli M, McDonald PJ, Veracini CA. Translational self diffusion in 4-n-octyloxy-4 ‘-cyanobiphenyl (8OCB) exploited with a static field gradient H-1 NMR diffusometry approach. Phys Chem Chem Phys. 2004;6:4701–4706.
  • Cifelli M, Veracini CA. Translational self diffusion anisotropy in the smectic A phase measured by a static fringe field gradient H-1 NMR diffusometry approach. Phys Chem Chem Phys. 2005;7:3412–3415.
  • Noack F. NMR field-cycling spectroscopy - principles and applications. Prog Nucl Magn Reson Spectrosc. 1986;18:171–276.
  • Terekhov MV, Dvinskikh SV, Privalov AF. A field-cycling NMR study of nematic 4-pentyl-4 ‘-cyanobiphenyl confined in porous glasses. Appl Magn Reson. 1998;15:363–381.
  • Ferraz A, Figueirinhas JL, Sebastiao PJ, et al. Molecular-dynamics study of the ferroelectric liquid-crystal CLIPNOC by proton spin-lattice relaxation. Liq Cryst. 1993;14:415–426.
  • Kimmich R, Anoardo E. Field-cycling NMR relaxometry. Prog Nucl Magn Reson Spectrosc. 2004;44:257–320.
  • Kruk D, Meier R, Rachocki A, et al. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry. J Chem Phys. 2014;140:244509.
  • Callaghan PT, Jolley KW, Lelievre J. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance. Biophys J. 1979;28:133–141.
  • Gaemers S, Bax A. Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy. J Am Chem Soc. 2001;123:12343–12352.
  • Poulos AS, Constantin D, Davidson P, et al. A PGSE-NMR study of molecular self-diffusion in lamellar phases doped with polyoxometalates. J Phys Chem B. 2010;114:220–227.
  • Saielli G. Fully atomistic simulations of the ionic liquid crystal [C(16)mim][NO3]: orientational order parameters and voids distribution. J Phys Chem B. 2016;120:2569–2577.
  • Dai J, Kharkov BB, Dvinskikh SV. Molecular and segmental orientational order in a smectic mesophase of a thermotropic ionic liquid crystal. Crystals. 2019;9:18.
  • Judeinstein P, Huet S, Lesot P. Multiscale NMR investigation of mesogenic ionic-liquid electrolytes with strong anisotropic orientational and diffusional behaviour. Rsc Adv. 2013;3:16604–16611.
  • Bowlas CJ, Bruce DW, Seddon KR. Liquid-crystalline ionic liquids. Chem Commun. 1996:1625–1626.
  • Bradley AE, Hardacre C, Holbrey JD, et al. Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts. Chem Mater. 2002;14:629–635.
  • Puntus LN, Schenk KJ, Bunzli JCG. Intense near-infrared luminescence of a mesomorphic ionic liquid doped with lanthanide beta-diketonate ternary complexes. Eur J Inorg Chem. 2005;4739–4744.
  • Dvinskikh SV, Furó I, Zimmermann H, et al. Anisotropic self-diffusion in thermotropic liquid crystals studied by 1H and 2H pulse-field-gradient spin-echo NMR. Phys Rev E. 2002;65:061701.
  • Ganzenmuller GC, Patey GN. Charge ordering induces a smectic phase in oblate ionic liquid crystals. Phys Rev Lett. 2010;105:137801.
  • Gorkunov MV, Osipov MA, Kapernaum N, et al. Molecular theory of smectic ordering in liquid crystals with nanoscale segregation of different molecular fragments. Phys Rev E. 2011;84:051704.
  • Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc. 2004;126:994–995.
  • Frise AE, Dvinskikh SV, Ohno H, et al. Ion channels and anisotropic ion mobility in a liquid-crystalline columnar phase as observed by multinuclear NMR diffusometry. J Phys Chem B. 2010;114:15477–15482.
  • Ichikawa T, Yoshio M, Hamasaki A, et al. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J Am Chem Soc. 2011;133:2163–2169.
  • Frise AE, Ichikawa T, Yoshio M, et al. Ion conductive behaviour in a confined nanostructure: NMR observation of self-diffusion in a liquid-crystalline bicontinuous cubic phase. Chem Commun. 2010;46:728–730.
  • Ichikawa T, Yoshio M, Hamasaki A, et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J Am Chem Soc. 2007;129:10662–10663.
  • Saielli G, Voth GA, Wang YT. Diffusion mechanisms in smectic ionic liquid crystals: insights from coarse-grained MD simulations. Soft Matter. 2013;9:5716–5725.