316
Views
5
CrossRef citations to date
0
Altmetric
Article

Twist-bend nematic phases of banana-shaped molecules with an axial chirality

Pages 2301-2321 | Received 17 May 2019, Accepted 29 Jul 2019, Published online: 03 Sep 2019

References

  • Meyer RB. Proceedings of the Les Houches summer school on theoretical physics, 1973, session no. XXV. New York (NY): Gordon and Breach; 1976.
  • Gortz V, Southern C, Roberts NW, et al. Unusual properties of a bent-core liquid-crystalline fluid. Soft Matter. 2009;5:463–471.
  • Cestari M,S, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-crystal dimer 1”,7”-bis(4-cyanobiphenyl-4’-yl) heptane: a twist-bend nematic liquid crystal. Phys Rev E. 2011;84:031704.
  • Henderson PA, Imrie CT. Methylene-linked liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2011;38:1407–1414.
  • Chen D, Porada JH, Hooper JB, et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. PNAS. 2013;110:15931–15936.
  • Beguin L, Emsley JW, Lell M, et al. The chirality of a twist-bend nematic phase identified by NMR spectroscopy. J Phys Chem B. 2012;116:7940–7951.
  • Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat Commun. 2013;4:2635.
  • Sepelj M, Lesac A, Baumeister U, et al. Intercalated liquid-crystalline phases formed by symmetric dimers with an α, ω-diiminoalkylene spacer. J Mater Chem. 2007;17:1154–1165.
  • Greco C, Luckhurst GR, Ferrarini A. Enantiotopic discrimination and director organization in the twist-bend nematic phase. Phys Chem Chem Phys. 2013;15:14961–14965.
  • Meyer C, Luckhurst GR, Dozov I. Flexoelectrically driven electroclinic effect in the twist-bend nematic phase of achiral molecules with bent shapes. Phys Rev Lett. 2013;111:067801.
  • de Almeida RRR, Zhang C, Parri O, et al. Nanostructure and dielectric properties of a twist-bend nematic liquid crystal mixture. Liq Cryst. 2014;41:1661–1667.
  • Chen D, Nakata M, Shao R, et al. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys Rev E. 2014;89:022506.
  • Challa PK, Borshch V, Parri O, et al. Twist-bend nematic liquid crystals in high magnetic fields. Phys Rev E. 2014;89:060501(R).
  • Yun CJ, Vengatesan MR, Vij JK, et al. Hierarchical elasticity of bimesogenic liquid crystals with twist-bend nematic phase. Appl Phys Lett. 2015;106:173102.
  • Hoffmann A, Vanakaras AG, Kohlmeier A, et al. On the structure of the Nx phase of symmetric dimers: inferences from NMR. Soft Matter. 2015;11:850–855.
  • Paterson DA, Gao M, Kim YK, et al. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4’-yloxy)-6-(4-cyanobiphenyl-4’-yl)hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12:6827–6840.
  • Adlem K, Copic M, Luckhurst GR, et al. Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants. Phys Rev E. 2013;88:022503.
  • Mandle RJ, Davis EJ, Voll CCA, et al. The relationship between molecular structure and the incidence of the NTB phase. Liq Cryst. 2015;42:688–703.
  • Mandle RJ, Archbold CT, Sarju JP, et al. The dependency of nematic and twist-bend mesophase formation on bend angle. Sci Rep. 2016;6:36682.
  • Dawood AA, Grossel MC, Luckhurst GR, et al. On the twist-bend nematic phase formed directly from the isotropic phase. Liq Cryst. 2015;43:2–12.
  • Archbold CT, Davis EJ, Mandle RJ, et al. Chiral dopants and the twist-bend nematic phase-induction of novel mesomorphic behaviour in an apolar bimesogen. Soft Matter. 2015;11:7547–7557.
  • Abberley JP, Jansze SM, Walker R, et al. Structure-property relationships in twist-bend nematogens: the influence of terminal groups. Liq Cryst. 2017;44:68–83.
  • Parsouzi Z, Shamid SM, Borshch V, et al. Fluctuation modes of a twist-bend nematic liquid crystal. Phys Rev X. 2016;6:021041.
  • Merkel K, Kocot A, Vij JK, et al. Distortions in structures of the twist bend nematic phase of a bent-core liquid crystal by the electric field. Phys Rev E. 2018;98:022704.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Commun. 2018;9:228.
  • D’Alessandro G, Luckhurst GR, Sluckin TJ. Twist-bend nematics and beyond. Liq Cryst. 2017;44:1–3.
  • Dawood AA, Grossel MC, Luckhurst GR, et al. Twist-bend nematics, liquid crystal dimers, structure-property relations. Liq Cryst. 2017;44:106–126.
  • Panov VP, Vij JK, Mehl GH. Twist-bend nematic phase in cyanobiphenyls and difluoroterphenyls bimesogens. Liq Cryst. 2017;44:147–159.
  • Xiang J, Shiyanovskii SV, Imrie C, et al. Electrooptic response of chiral nematic liquid crystals with oblique helicoidal director. Phys Rev Lett. 2014;112:217801.
  • Matsuyama A. Field-induced oblique helicoidal cholesteric phases in mixtures of chiral and achiral liquid crystalline molecules. Liq Cryst. 2018;45:153–164.
  • Matsuyama A. Theory of a helicoidal cholesteric phase induced by an external field. Liq Cryst. 2016;43:783–795.
  • Thisayukta J, Nakayama Y, Watanabe J. Effect of chemical structure on the liquid crystallinity of banana-shaped molecules. Liq Cryst. 2000;27:1129–1135.
  • Thisayukta J, Niwano H, Takezoe H, et al. Enhancement of twisting power in the chiral nematic phase by introducing achiral banana-shaped molecules. J Am Chem Soc. 2002;24:3354–3358.
  • Lubensky TC, Radzihovsky L. Theory of bent-core liquid-crystal phases and phase transitions. Phys Rev E. 2002;66:031704.
  • Lansac Y, Maiti PK, Clark NA, et al. Phase behavior of bent-core molecules. Phys Rev E. 2003;67:011703.
  • Takezoe H, Eremin A. Bent-shaped liquid crystals. Boca Raton: CRC Press; 2017.
  • Dozov I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys Lett. 2001;56:247–253.
  • Shamid SM, Dhakal S, Selinger JV. Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals. Phys Rev E. 2013;87:052503.
  • Lelidis I, Barbero G. Nematic phases with spontaneous splay-bend deformation: standard elastic description. Liq Cryst. 2016;43:208.
  • Barbero G, Lelidis I. Nonlinear curvature elasticity of nematic liquid crystals. Liq Cryst. 2018. DOI:10.1080/02678292.2018.1512167
  • Shamid SM, Allender DW, Selinger JV. Predicting a polar analog of chiral blue phases in liquid crystals. Phys Rev Lett. 2014;113:237801.
  • Virga EG. Double-well elastic theory for twist-bend nematic phases. Phys Rev E. 2014;89:052502.
  • Barbero G, Evangelista LR, Rosseto MP, et al. Elastic continuum theory: towards understanding of the twist-bend nematic phases. Phys Rev E. 2015;92:030501(R).
  • Zola RS, Barbero G, Lelidis I, et al. A continuum description for cholesteric and nematic twist-bend phases based on symmetry considerations. Liq Cryst. 2017;44:24–30.
  • Kats EI. Spontaneous chiral symmetry breaking in liquid crystals. Low Temp Phys. 2017;43:5.
  • Meyer C, Dozov I. Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase. Soft Matter. 2016;12:574–580.
  • Longa L, Tomczyk W. Twist-bend nematic phase in the presence of molecular chirality. Liq Cryst. 2018;45:2074–2085.
  • Greco C, Luckhurst GR, Ferrarini A. Molecular geometry, twist-bend nematic phase and unconventional elasticity: a generalised Maier-Saupe theory. Soft Matter. 2014;10:9318–9323.
  • Vanakaras AG, Photinos DJ. A molecular theory of nematic-nematic phase transitions in mesogenic dimers. Soft Matter. 2016;12:2208–2220.
  • To TBT, Sluckin TJ, Luckhurst GR. Molecular field theory for biaxial nematics formed from liquid crystal dimers and inhibited by the twist-bend nematic. Phys Chem Chem Phys. 2017;19:29321–29332.
  • Osipov MA, Pajak G. Effect of polar intermolecular interactions on the elastic constants of bent-core nematics and the origin of the twist-bend phase. Eur Phys J E. 2016;39:45.
  • Ferrarini A. The twist-bend nematic phase: molecular insights from a generalised Maier-Saupe theory. Liq Cryst. 2017;44:45–57.
  • Tomczyk W, Pajak G, Longa L. Twist-bend nematic phases of bent-shaped biaxial molecules. Soft Matter. 2016;12:7445–7452.
  • Greco C, Ferrarini A. Entropy-driven chiral order in a system of achiral bent particles. Phys Rev Lett. 2015;115:147801.
  • Matsuyama A. Director-pitch coupling-induced twist-bend nematic phase. J Phys Soc Jpn. 2016;85:114606.
  • Matsuyama A. Twist-bend nematic phases in binary mixtures of banana-shaped liquid crystalline molecules. Liq Cryst. 2018;45:607–624.
  • Maier W, Saupe A. Eine einfache molekular-statistische Theorie der nematischen kristallinflussigen Phase. Z Naturforsch. 1959;14a:882–889.
  • Onsager L. The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci. 1949;51:627–659.
  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford: Oxford Science; 1993.
  • Niori T, Sekine T, Watanabe J, et al. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J Mater Chem. 1996;6:1231–1233.
  • Reddy RA, Tschierske C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J Matt Chem. 2005;16:907–961.
  • Rosso R. Orientational order parameters in biaxial nematics: polymorphic notation. Liq Cryst. 2007;34:737–748.
  • Lintuvuori JS, Yu G, Walker M, et al. Emergent chirality in achiral liquid crystals: insights from molecular simulation models of the behaviour of bent-core mesogens. Liq Cryst. 2018;45:1996–2009.
  • Gleeson HF, Nagaraj M. From understanding structures in antiferro-ferri and ferroelelectric liquid crystals to an unusual electro-optic effect in a bent-core nematic; a celebration of innovative materials. Liq Cryst. 2017;44:1806–1815.
  • Maisch S, Krause AM, Schmidt D, et al. To be or not to be-nematic liquid crystals from shape-persistent V-shaped nematogens with the ‘magic angle’. Liq Cryst. 2018;45:136–151.
  • Melnik G, Photinos P, Saupe A. Landau point on a nematic-isotropic transition line. Phys Rev A. 1989;39:1597–1600.
  • Teixeira PIC, Masters AJ, Mulder BM. Biaxial nematic order in the hard-boomerang fluid. Mol Cryst Liq Cryst. 1998;323:167–189.
  • Camp PJ, Allen MP, Masters AJ. Theory and computer simulation of bent-core molecules. J Chem Phys. 1999;111:9871–9881.
  • Chiccoli C, Pasini P, Semeria F, et al. A detailed monte carlo investigation of the tricritical region of a biaxial liquid crystal system. Int J Mod Phys C. 1999;10:469–476.
  • Luckhurst GR. Biaxial nematic liquid crystals: fact or fiction? Thin Solid Films. 2001;393:40–52.
  • Bates MA, Luckhurst GR. Biaxial nematic phases and V-shaped molecules: a monte carlo simulation study. Phys Rev E. 2005;72:051702.
  • Longa L, Pajak G. Luckhurst-Romano model of thermotropic biaxial nematic phase. Liq Cryst. 2005;32:1409–1417.
  • Longa L, Pajak G, Wydro T. Chiral symmetry breaking in bent-core liquid crystals. Phys Rev E. 2009;79:040701(R.
  • Mettout B. Theory of uniaxial and biaxial nematic phases in bent-core systems. Phys Rev E. 2005;72:031706.
  • To TBT, Sluckin TJ, Luckhurst GR. Molecular field theory for polar, biaxial bent-core nematics. Liq Cryst. 2016;43:1448–1461.
  • Grzybowski P, Longa L. Biaxial nematic phase in model bent-core systems. Phys Rev Lett. 2011;107:027802.
  • Bates MA. Bent core molecules and the biaxial nematic phase: a transverse dipole widens the optimal angle. Chem Phys Lett. 2007;437:189–192.
  • Alben R. Phase transitions in a fluid of biaxial particles. Phys Rev Lett. 1973;30:778–781.
  • Straley JP. Ordered phases of a liquid of biaxial particles. Phys Rev A. 1974;10:1881–1887.
  • Kapanowski A. Straley model of biaxial nematics extended. Mol Cryst Liq Cryst. 2011;540:50–58.
  • To TBT, Sluckin TJ, Luckhurst GR. Biaxiality-induced magnetic field effects in bent-core nematics: molecular-field and Landau theory. Phys Rev E. 2013;88:062506.
  • Luckhurst GR, Zannoni C, Nordio PL, et al. A molecular field theory for uniaxial nematic liquid crystals formed by non-cylindrically symmetric molecules. Mol Phys. 1975;30:1345–1358.
  • Matsuyama A, Arikawa S, Wada M, et al. Uniaxial and biaxial nematic phases of banana-shaped molecules and the effects of an external field. Liq Cryst. 2019 April 4. published online.
  • Goldstein H, Safko JL, Poole CP. Classical mechanics. 3rd ed. Pearson Education Limited, Essex; 2014.
  • Matsuyama A. 2010. Chapter 2. In: Isayev AI, editor. Encyclopedia of polymer blends. Vol. 1. Weinheim (Germany): WILEY-VCH, 45–100
  • Goossens WJA. A molecular theory of the cholesteric phase and of the twisting power of optically active molecules in a nematic liquid crystal. Mol Cryst Liq Cryst. 1971;12:237–244.
  • Lin-Liu YR, Shih YM, Woo CW. Molecular theory of cholesteric liquid crystals and cholesteric mixtures. Phys Rev A. 1977;15:2550–2556.
  • Matsuyama A. Theory of polymer-dispersed cholesteric liquid crystals. J Chem Phys. 2013;139:174906.
  • Matsuyama A. Cholesteric-isotropic phase transitions of banana-shaped molecules. Mol Cryst Liq Cryst. inpress.
  • Matsuyama A. Theory of binary mixtures of a flexible polymer and a liquid crystal. J Chem Phys. 1996;105:1654–1660.
  • Priestley PB, Wojtowicz PJ, Sheng P, editors. Introduction to liquid crystals. New York (NY): Prenum Press; 1976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.