159
Views
8
CrossRef citations to date
0
Altmetric
Article

TiO2 nanoparticle – liquid crystal interaction with smectogenic monomers and their electropolymerised polymers

, , & ORCID Icon
Pages 423-432 | Received 07 Jun 2019, Accepted 11 Aug 2019, Published online: 28 Aug 2019

References

  • Meneses-Franco A, Fierro-Armijo AE, Romero-Hasler P, et al. Smectogenic liquid crystals and nanoparticles: an approach for potential application in photovoltaics. J Mater Chem C. 2015;3:8566–8573.
  • Pandey MB, Ackerman PJ, Burkart A, et al. Topology and self-assembly of defect-colloidal superstructure in confined chiral nematic liquid crystals. Phys Rev E. 2015;91, 012501.
  • Chen W, Chen YW, Li F, et al. Ordered microstructure induced by orientation behavior of liquid-crystal polythiophene for performance improvement of hybrid solar cells. Sol Energy Mater Sol Cells. 2012;96:266–275.
  • Martínez-Miranda LJ, Traister KM, Meléndez-Rodríguez I, et al. Liquid crystal-ZnO nanoparticle photovoltaics: role of nanoparticles in ordering the liquid crystal. Appl Phys Lett. 2010;97:223301.
  • Branch J, Thompson R, Taylor JW, et al. ZnO nanorod-smectic liquid crystal composites: role of ZnO particle size, shape, and concentration on liquid crystal order and current-voltage properties. J Appl Phys. 2014;115:164303.
  • Weickert J, Dunbar RB, Hesse HC, et al. Nanostructured organic and hybrid solar cells. Adv Mater. 2011;23:1810–1828.
  • Rodarte AL, Cisneros F, Hirst LS, et al. Dye-integrated cholesteric photonic luminescent solar concentrator. Liq Cryst. 2014;41:1442–1447.
  • Rodarte AL, Shcherbatyuk GV, Shcherbatyuk L, et al. Dynamics of spontaneous emission of quantum dots in a one-dimensional cholesteric liquid crystal photonic cavity. Rsc Adv. 2012;2:12759–12763.
  • Rodarte AL, Gray C, Hirst LS, et al. Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity. Phys Rev B. 2012;85:35430.
  • Rodarte AL, Nuno ZS, Cao BH, et al. Tuning quantum-dot organization in liquid crystals for robust photonic applications. Chemphyschem. 2014;15:1413–1421.
  • Draper M, Saez IM, Cowling SJ, et al. Self-assembly and shape morphology of liquid-crystalline gold metamaterials. Adv Funct Mater. 2011;21:1260–1278.
  • Pratibha R, Park K, Smalyukh II, et al. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt Express. 2009;17:19459–19469.
  • Yuan Y, Smalyukh II. Topological nanocolloids with facile electric switching of plasmonic properties. Opt Lett. 2015;40:5630–5633.
  • Cirtoaje C, Petrescu E, Stan C, et al. Ferromagnetic nanoparticles suspensions in twisted nematic. Phys E-Low-Dimensional Syst Nanostruct. 2016;79:38–43.
  • Senyuk B, Liu QK, Yuan Y, et al. Edge pinning and transformation of defect lines induced by faceted colloidal rings in nematic liquid crystals. Phys Rev E. 2016;93(6):062704.
  • Middha M, Kumar R, Raina KK. Effects of chirality on optical and electro-optic behavior of nematic liquid crystals doped with functionalized silver nanoparticles. J Mol Liq. 2016;219:631–636.
  • Milette J, Cowling SJ, Toader V, et al. Reversible long range network formation in gold nanoparticle - nematic liquid crystal composites. Soft Matter. 2012;8:173–179.
  • Chen X, Chen L, Chen YW. Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells. Rsc Adv. 2014;4:3627–3632.
  • Haverkate LA, Zbiri M, Johnson MR, et al. On the morphology of a discotic liquid crystalline charge transfer complex. J Phys Chem B. 2012;116:13098–13105.
  • Yuan K, Li F, Chen L, et al. Liquid crystal helps ZnO nanoparticles self-assemble for performance improvement of hybrid solar cells. J Phys Chem C. 2012;116:6332–6339.
  • Bian J, Wang G, Lin HL, et al. HDPE composites strengthened-toughened synergistically by L-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials. J Appl Polym Sci. 2017;134(29):45055.
  • Liu R, Chen YX, Ma Q, et al. Noncovalent functionalization of carbon nanotube using poly(vinylcarbazole)-based compatibilizer for reinforcement and conductivity improvement in epoxy composite. J Appl Polym Sci. 2017;134, 45022.
  • Nayek P, Li GQ. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device. Sci Rep. 2015;5:10845.
  • Ghosh S, Roy SK, Acharya S, et al. Effect of multiferroic BiFeO3 nanoparticles on electro-optical and dielectric properties of a partially fluorinated orthoconic antiferroelectric liquid crystal mixture. EPL. 2011;96(4):47003.
  • Rozic B, Jagodic M, Gyergyek S, et al. Multiferroic behaviour in mixtures of the ferroelectric liquid crystal and magnetic nanoparticles. Mol Cryst Liq Cryst. 2011;545:1323–1328.
  • Móczó J, Pukánszky B. Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem. 2008;14:535–563.
  • Soule ER, Milette J, Reven L, et al. Phase equilibrium and structure formation in gold nanoparticles-nematic liquid crystal composites: experiments and theory. Soft Matter. 2012;8:2860–2866.
  • Ravnik M, Zumer S. Landau-de Gennes modelling of nematic liquid crystal colloids. Liq Cryst. 2009;36:1201–1214.
  • Fukuda J, Stark H, Yokoyama H. Friction drag of a spherical particle in a liquid crystal above the isotropic-nematic transition. Phys Rev E. 2005;72:21701.
  • Stark H, Ventzki D. Non-linear stokes drag of spherical particles in a nematic solvent. Europhys Lett. 2002;57:60–66.
  • Stark H. Saturn-ring defects around microspheres suspended in nematic liquid crystals: an analogy between confined geometries and magnetic fields. Phys Rev E. 2002;66:32701.
  • Musevic I, Skarabot M, Tkalec U, et al. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. 2006;313:954–958.
  • Mondain-Monval O, Dedieu JC, Gulik-Krzywicki T, et al. Weak surface energy in nematic dispersions: Saturn ring defects and quadrupolar interactions. Eur Phys J B. 1999;12:167–170.
  • Mondiot F, Chandran SP, Mondain-Monval O, et al. Shape-induced dispersion of colloids in anisotropic fluids. Phys Rev Lett. 2009;103:238303.
  • Loudet JC, Barois P, Poulin P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature. 2000;407:611–613.
  • Musevic I. Nematic colloids, topology and photonics. Philos Trans R Soc A Mathematical Phys Eng Sci. 2013;371:20120266.
  • Melle M, Schlotthauer S, Mazza MG, et al. Defect topologies in a nematic liquid crystal near a patchy colloid. J Chem Phys. 2012;136:194703.
  • Soule ER, Rey AD. Hedgehog defects in mixtures of a nematic liquid crystal and a non-nematogenic component. Soft Matter. 2012;8:1395–1403.
  • Loudet JC, Barois P, Auroy P, et al. Colloidal structures from bulk demixing in liquid crystals. Langmuir. 2004;20:11336–11347.
  • Patricio P, Tasinkevych M, Da Gama MMT. Colloidal dipolar interactions in 2D smectic-C films. Eur Phys J E. 2002;7:117–122.
  • Martinez-Miranda LJ, Taylor JW, Kurihara LK. interfacial structure of a liquid crystal/nanoparticle nanocomposite studied by X-ray scattering: indirect evidence for the role of faceting of the nanoparticles. Langmuir. 2016;32:239–246.
  • Meneses-Franco A, Trujillo-Rojo VH, Soto-Bustamante EA. Synthesis and characterization of pyroelectric nanocomposite formed of BaTiO3 nanoparticles and a smectic liquid crystal matrix. Phase Transitions. 2010;83:1037–1047.
  • Cordoyiannis G, Gyergyek S, Rozic B, et al. The effect of magnetic nanoparticles upon the smectic-A to smectic-C* phase transition. Liq Cryst. 2016;43:314–319.
  • Rasna M, Cmok L, Evans D, et al. Phase transitions, optical, dielectric and viscoelastic properties of colloidal suspensions of BaTiO3 nanoparticles and cyanobiphenyl liquid crystals. Liq Cryst. 2015;42:1059–1067.
  • Martinez-Miranda LJ, Taylor JW, Kurihara LK. Liquid crystals nanocomposites for photovoltaic applications: structural properties. Mol Cryst Liq Cryst. 2014;594:100–104.
  • Martínez-Miranda LJ, Kurihara LK. Interaction and response of a smectic-A liquid crystal to a nanometer particle: phase transition due to the combined effect of the functionalization compound and particle size. J Appl Phys. 2009;105:084305.
  • Podgornov FV, Gavrilyak M, Karaawi A, et al. Mechanism of electrooptic switching time enhancement in ferroelectric liquid crystal/gold nanoparticles dispersion. Liq Cryst. 2018;45:1594–1602.
  • Ganguly P, Kumar A, Tripathi S, et al. Faster and highly luminescent ferroelectric liquid crystal doped with ferroelectric BaTiO 3 nanoparticles. Appl Phys Lett. 2013;102:222902.
  • Ghosh S, Roy SK, Acharya S, et al. Effect of multiferroic BiFeO 3 nanoparticles on electro-optical and dielectric properties of a partially fluorinated orthoconic antiferroelectric liquid crystal mixture. Europhy Lett. 2011;96:47003.
  • Rozycka A, Iwan A, Filapek M, et al. Study of TiO2 in anatase form on selected properties of new aliphatic-aromatic imines with bent shape towards organic electronics. Liq Cryst. 2018;45:831–843.
  • Liu Y, Wang D, Gao H, et al. TiO2 nanorod arrays induced broad-band reflection in chiral nematic liquid crystals with photo-polymerization network. Liq Cryst. 2019;46:210–218.
  • Martínez-Miranda LJ, Romero-Hasler P, Meneses-Franco A, et al. Incommensurate structures investigated by X-ray studies of electropolymerised methacrylic monomer with TiO2 nanoparticles. Liq Cryst. 2017;44:1549–1558.
  • Soto-Bustamante EA, Haase W. Synthesis and characterization of new liquid crystalline monomers for non-linear optics. X-ray study of re-entrant nematic behaviour with smectic-like fluctuations of C-type. Liq Cryst. 1997;23:603–612.
  • Soto-Bustamante EA, Galyametdinov YG, Griesar K, et al. Synthesis and characterization of a novel liquid crystalline side chain metallopolymer. Macromol Chem Phys. 1998;199:1337–1342.
  • Soto-Bustamante EA, Saldaño-Hurtado D, Vergara-Toloza RO, et al. Phase characterization of two homologous series of LC methacrylic monomers based on ω-hexyl- and ω-butyl-oxysalicylaldimine groups with different alkoxy tail substitutions. Liq Cryst. 2003;30:17–22.
  • Romero-Hasler P, Fierro-Armijo AE, Soto-Bustamante EA, et al. Synthesis and characterisation of two homologous series of LC acrylic monomers based on phenolic and resorcinic azobenzene groups. Liq Cryst. 2016;43:1804–1812.
  • Blanton TN, Huang TC, Toraya H, et al. JCPDS - international centre for diffraction data round robin study of silver behenate. A possiblelow-angle X-ray diffraction calibration standard. Powder Diffr. 1995;91–95.
  • Vergara-Toloza RO, Soto-Bustamante EA, González-Henríquez CM, et al. Side chain liquid crystalline composites, occurrence of interdigitated bilayer smectic C phases. Liq Cryst. 2011;38:911–916.
  • Kasch N, Dierking I, Turner M, et al. Liquid crystalline textures and polymer morphologies resulting from electropolymerisation in liquid crystal phases. J Mater Chem C. 2015;3:8018–8023.
  • Soto-Bustamante EA, Werner R, Weyrauch T, et al. Antiferroelectricity in achiral mesogenic mixtures of organic materials. Chem Phys Lett. 2000;322:45–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.