303
Views
36
CrossRef citations to date
0
Altmetric
Article

Mesomorphic and geometrical orientation study of the relative position of fluorine atom in some thermotropic liquid crystal systems

, ORCID Icon &
Pages 404-413 | Received 26 Jun 2019, Accepted 11 Aug 2019, Published online: 29 Aug 2019

References

  • Saccone M, Kuntze K, Ahmed Z, et al. ortho-Fluorination of azophenols increases the mesophase stability of photoresponsive hydrogen-bonded liquid crystals. J Mater Chem C. 2018;6:9958–9963.
  • Jessy P, Radha S, Patel N. Morphological, optical and dielectric behavior of chiral nematic liquid crystal mixture: study on effect of different amount of chirality. J Mol Liq. 2018;255:215–223.
  • Mishra R, Hazarika J, Hazarika A, et al. Dielectric properties of a strongly polar nematic liquid crystal compound doped with gold nanoparticles. Liq Cryst. 2018;45:1661–1671.
  • Zaki A. Optical measurements of phase transitions in difluorophenylazophenyl benzoate thermotropic liquid crystal with specific orientated fluorine atoms. Phase Transitions. 2019;92:135–148.
  • Zaki AA, Ahmed H, Hagar M. Impact of fluorine orientation on the optical properties of difluorophenylazophenyl benzoates liquid crystal. Mater Chem Phys. 2018;216:316–324.
  • Sanches SA, Costa WC, Bechtold IH, et al. Bromine-terminated azobenzene liquid crystals. Liq Cryst. 2019;46:655–665.
  • Zhou M, Lu H, Zhang X, et al. Tuning helical twisting power and photoisomerisation kinetics of axially chiral cyclic azobenzene dopants in cholesteric liquid crystals. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1614235
  • He W-L, Li M, S-Q L, et al. Synthesis of chiral azobenzene derivatives and the performance in photochemical control of blue phase liquid crystal. Liq Cryst. 2018;45:370–380.
  • Goda K, Omori M, Takatoh K. Optical switching in guest–host liquid crystal devices driven by photo-and thermal isomerisation of azobenzene. Liq Cryst. 2018;45:485–490.
  • Hagar M, Ahmed H, Alhaddad O. Experimental and theoretical approaches of molecular geometry and mesophase behaviour relationship of laterally substituted azopyridines. Liq Cryst. 2019;46:1440–1451.
  • Hagar M, Ahmed H, Saad G. New calamitic thermotropic liquid crystals of 2-hydroxypyridine ester mesogenic core: mesophase behaviour and DFT calculations. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1631967
  • Hagar M, Ahmed H, Alhaddad O. New azobenzene-based natural fatty acid liquid crystals with low melting point: synthesis, DFT calculations and binary mixtures. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1616841
  • Naoum MM, Saad GR, Nessim RI, et al. Effect of molecular structure on the phase behaviour of some liquid crystalline compounds and their binary mixtures II. 4-Hexadecyloxyphenyl arylates and aryl 4-hexadecyloxy benzoates. Liq Cryst. 1997;23:789–795.
  • Saad GR, Nessim RI. Effect of molecular structure on the phase behaviour of some liquid crystalline compounds and their binary mixtures VI[1]. The effect of molecular length. Liq Cryst. 1999;26:629–636.
  • Naoum MM, Mohammady SZ, Ahmed HA. Lateral protrusion and mesophase behaviour in pure and mixed states of model compounds of the type 4-(4′-substituted phenylazo)-2-(or 3-)methyl phenyl-4′-alkoxy benzoates. Liq Cryst. 2010;37:1245–1257.
  • Sultan AM, Fahmi AA, Saad GR, et al. Effect of orientation of extra fused benzene ring and lateral methyl substituent on the mesophase behaviour of three-ring azo/ester molecules. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1622046
  • Saad GR, Ahmed NH, Fahmi AA, et al. Effect of orientation of lateral methyl substituent on the thermal behaviour of the mesophase in binary systems of 4-substituted phenyl 4ʹ-(4″-alkoxy phenylazo) benzoates. Liq Cryst. 2018;45:1177–1185.
  • Luckhurst G, Gray GW The molecular physics of liquid crystals: Academic press; 1979.
  • Dave JS, Menon M. Azomesogens with a heterocyclic moiety. Bull Mater Sci. 2000;23:237–238.
  • Abberley JP, Killah R, Walker R, et al. Heliconical smectic phases formed by achiral molecules. Nat Commun. 2018;9:228.
  • Paterson DA, Crawford CA, Pociecha D, et al. The role of a terminal chain in promoting the twist-bend nematic phase: the synthesis and characterisation of the 1-(4-cyanobiphenyl-4′-yl)-6-(4-alkyloxyanilinebenzylidene-4′-oxy) hexanes. Liq Cryst. 2018;45:2341–2351.
  • Paterson DA, Walker R, Abberley JP, et al. Azobenzene-based liquid crystal dimers and the twist-bend nematic phase. Liq Cryst. 2017;44:2060–2078.
  • Paterson DA, Xiang J, Singh G, et al. Reversible isothermal twist–bend nematic–nematic phase transition driven by the photoisomerization of an azobenzene-based nonsymmetric liquid crystal dimer. J Am Chem Soc. 2016;138:5283–5289.
  • Hagar M, Ahmed HA, Alhaddadd OA. DFT Calculations and Mesophase Study of Coumarin Esters and Its Azoesters. Crystals. 2018;8:359.
  • Hagar M, Ahmed HA, Saad GR. Synthesis and mesophase behaviour of Schiff base/ester 4-(arylideneamino)phenyl-4″-alkoxy benzoates and their binary mixtures. J Mol Liq. 2019;273:266–273.
  • Chen R, An Z, Wang W, et al. Lateral substituent effects on UV stability of high-birefringence liquid crystals with the diaryl-diacetylene core: DFT/TD-DFT study. Liq Cryst. 2017;44:1515–1524.
  • Ahmed HA, Hagar M, El-Sayed TH, et al. Schiff base/ester liquid crystals with different lateral substituents: mesophase behaviour and DFT calculations. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1566581
  • Hagar M, Ahmed HA, Saad GR. Mesophase stability of new Schiff base ester liquid crystals with different polar substituents. Liq Cryst. 2018;45:1324–1332.
  • Ahmed HA, Hagar M, Saad G. Impact of The Proportionation of Dialkoxy Chain Length on The Mesophase Behaviour of Schiff base/ester Liquid Crystals; Experimental and Theoritical Study. Liq Cryst. 2019. DOI:10.1080/02678292.2019.1590743
  • Paterson DA, Gao M, Kim Y-K, et al. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016;12:6827–6840.
  • Sarkar DD, Deb R, Chakraborty N, et al. Cholesterol-based dimeric liquid crystals: synthesis, mesomorphic behaviour of frustrated phases and DFT study. Liq Cryst. 2013;40:468–481.
  • Majumdar K, Mondal S, Sinha RK. Synthesis and characterization of novel cholesterol based mesogenic compounds using ‘click’chemistry. New J Chem. 2010;34:1255–1260.
  • Kaur G, Singh S, Sreekumar A, et al. The evaluation of the role of C–H⋯F hydrogen bonds in crystal altering the packing modes in the presence of strong hydrogen bond. J Mol Struct. 2016;1106:154–169.
  • Baluja S, Pandya N, Vekariya N. A thermal study of some Schiff bases derivative of α-napthylamine. Russ J Phys Chem A Focus Chem. 2008;82:1601–1604.
  • Frisch M, Trucks G, Schlegel HB, et al. Gaussian 09, revision a. 02. Wallingford, CT: Gaussian. Inc; 2009. p. 200.
  • Dennington R, Keith T, Millam J GaussView, version 5. 2009.
  • Naoum MM, Metwally NH, Abd Eltawab MM, et al. Polarity and steric effect of the lateral substituent on the mesophase behaviour of some newly prepared liquid crystals. Liq Cryst. 2015;42:1351–1369.
  • Gray GW Molecular structure and the properties of liquid crystals: Academic press; 1962.
  • Imrie C, Taylor L. The preparation and properties of low molar mass liquid crystals possessing lateral alkyl chains. Liq Cryst. 1989;6:1–10.
  • Lizu M, Lutfor M, Surugau N, et al. Synthesis and characterization of ethyl cellulose–based liquid crystals containing azobenzene chromophores. Mol Cryst Liq Cryst. 2010;528:64–73.
  • Khoo I-C, Wu S-T. Optics and nonlinear optics of liquid crystals. Singapore: World Scientific; 1993.
  • Chemla DS. Nonlinear optical properties of organic molecules and crystals. New York: Elsevier; 2012.
  • Karim MR, Sheikh MRK, Yahya R, et al. The effect of terminal substituents on crystal structure, mesophase behaviour and optical property of azo-ester linked materials. Liq Cryst. 2016;43:1862–1874.
  • Karim MR, Sheikh MRK, Yahya R, et al. Synthesis of polymerizable liquid crystalline monomers and their side chain liquid crystalline polymers bearing azo-ester linked benzothiazole mesogen. Colloid Polym Sci. 2015;293:1923–1935.
  • Sinha L, Prasad O, Narayan V, et al. Raman, FT-IR spectroscopic analysis and first-order hyperpolarisability of 3-benzoyl-5-chlorouracil by first principles. Mol Simulat. 2011;37:153–163.
  • Sıdır İ, Sıdır YG, Kumalar M, et al. Ab initio Hartree–Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2, 3-dibromopropyl)-4, 8-dimethylcoumarin molecule. J Mol Struct. 2010;964:134–151.
  • Scrocco E, Tomasi J. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv Quantum Chem. 1978;11: 115–193. Elsevier.
  • Politzer P, Murray JS. Relationships between dissociation energies and electrostatic potentials of C□ NO2 bonds: applications to impact sensitivities. J Mol Struct. 1996;376:419–424.
  • Marks TJ, Ratner MA. Design, synthesis, and properties of molecule‐based assemblies with large second‐order optical nonlinearities. Angew Chem Int Ed Engl. 1995;34:155–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.